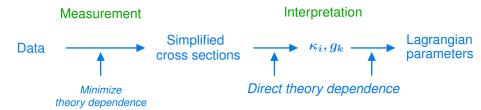


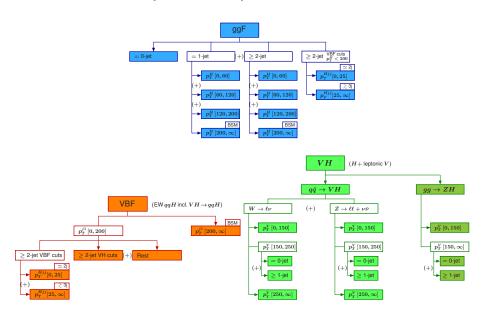
Higgs Report 2 - STXS -

Les Houches Workshop Series "Physics at TeV Colliders" 2017

June 14, 2017

Kerstin Tackmann (DESY)


Higgs: Josh Bendavid, Fabrizio Caola, Robert Harlander, KT


Introduction: simplified template cross sections.

Goals

- Decouple the measurements and the interpretation
 - \star Run1 μ measurements fold theory predictions and uncertainties directly into the measurements
- Minimize the theoretical uncertainties in the measurements
- Allow for interpretation with more/different model assumptions/BSM scenarios than provided by the experiments

Introduction: simplified template cross sections.

Presentation of results.

- Which information should be provided by the experiments so that the results can be used for interpretations?
 - EFT fits, specific BSM models, ... as long as the acceptance used in the measurements is not too different
- For all cases: STXS central values

First case (simplest)

- Assumes Gaussian behavior is a good approximation
- Covariance matrices separated by
 - * statistical uncertainties
 - total experimental systematic uncertainties
 - ★ combined* theoretical uncertainties
 - * *but separately specific theoretical uncertainties that might have to be correlated between the measurement and the interpretation
- Size of the uncertainty (variation) that might have to be correlated between the measurement and the interpretation

Presentation of results.

Second case (next simplest)

- Still assumes Gaussian behavior is a good approximation
- Keep the nuisance parameters that might have to be correlated between measurement and interpretation unprofiled
 - ★ Report extended covariance matrix or Hessian
 - Requires some studies on numerical stability to decide

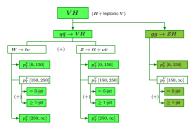
$$\left(\begin{array}{c|c}
C_B + \Delta \Delta^T & \Delta \\
\hline
\Delta & 1
\end{array}\right)$$

 C_B covariance matrix of measured bins

Δ impact of unprofiled uncertainty on measured bins

Third case

- In case Gaussian approximation is not good enough for single STXS, provide (parametrized) likelihood for these STXS
- Experiments will have to test if interpretations with these inputs possible (compare to using full likelihoods)


Parametrization of VH uncertainties: sources.

QCD uncertainties (same for W and Z)

- ullet $\Delta_{\mu}, \Delta_{150}, \Delta_{250}$
 - \star Option 1: overall correlated uncertainty plus two uncertainties related to p_T^V shape
 - \star Option 2: one uncorrelated uncertainty per p_T^V region
- $\Delta_{0/1}$: jet bin migration uncertainty

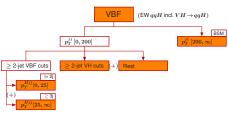
EW uncertainties

- ullet Δ_{Sud} : EW Sudakov effects (correlated between W and Z)
- \bullet Δ_W , Δ_Z , Δ_γ
 - ★ Separate uncertainties for non-Sudakov contributions
- Uncorrelated uncertainties (separate sources) between qar q o VH and gg o ZH
 - \star Study which sources for $gg \to ZH$ are correlated with $gg \to H$

Parametrization of VH uncertainties: correlation model.

		QCD uncertainties				EW uncertainties			
Bin	$igg \Delta_{\mu}$	Δ_{150}	Δ_{250}	$\left \Delta_{0/1} ight $	$\Delta_{ m Sud}$	Δ_W	Δ_Z	Δ_{γ}	
W [0,150]	x_1	-c	0		y_1	*		*	
W [150,250]	x_2	+c	+d		y_2	*		*	
=0j [150,250]	x_2z	+cz	+dz	+1	• • •	*		*	
≥1j [150,250]	$x_2(1-z)$	+c(1-z)	$+d(1\!-\!z)$	-1		*		*	
W [250, ∞]	x_3	0	-d		y_3	*		*	
Z [0,150]	x_1	-c	0		y_1		*		
Z [150,250]	$ x_2 $	+c	+d		y_2		*		
=0j [150,250]	x_2z	+cz	+dz	+1	• • •		*		
≥1j [150,250]	$ x_2(1-z) $	+c(1-z)	+d(1-z)	-1			*		
Z [250, ∞]	x_3	0	-d		y_3		*		

+Uncorrelated sources for gg o ZH


Parametrization of VBF uncertainties: sources.

QCD uncertainties

- \bullet Δ_{μ}
 - ★ Correlation between bins still to be discussed
- ullet Δ_{u}^{VH} uncertainty for the VH bin induced by hadronic VH process
 - ★ Correlated with leptonic VH
- ullet Δ_{200} migration uncertainty related to p_T^{j1} cut
- ullet Δ_{25} migration uncertainty related to third-jet veto

EW uncertainties

- Δ_{Sud}: EW Sudakov effects
 - \star correlate with qar q o VH
- \bullet $\Delta_{\rm hard}$

Parametrization of VBF uncertainties: correlation model.

	QCD uncertainties				EW uncertainties			
Bin	Δ_{μ}	$oldsymbol{\Delta_{\mu}^{ ext{VH}}}$	Δ_{200}	$oxed{\Delta_{25}}$	$\Delta_{ m Sud}$	$\Delta_{ m hard}$	$\Delta_{W,Z,\gamma}^{ m VH}$	
p_T^j [0,200]	?	$1-\epsilon$	-1		y_1	*		
VBF cuts	?		$-x_1$		y_2	*		
$p_T^{Hjj}\left[0,25 ight]$?		$-x_1z$	+1		*		
$p_T^{Hjj}\left[25,\infty ight]$?		$egin{array}{c} -x_1z \ -x_1(1\!-\!z) \end{array}$	-1	• • •	*		
VH cuts	?	$1-\epsilon$	$-x_2$		y_3	*	1	
Rest	?		$-x_3$		y_4	*		
$p_T^j~[200,\infty]$?	ϵ	+1		1-y	*		

Other topics discussed: binning.

Future binning for gluon fusion

• Consider to split the highest p_T^H bins into [200, 500] and [500, ∞] to have a dedicated bin for boosted analyses

Treatment of gg o Z(o qar q)H

- Currently considered as part of the gluon fusion bins
- Conclusion of discussion is to keep it like this
- Consider to introduce a split of the gluon fusion 2-jet bins ([60, 120], [120, 200], [200, ∞]) to have dedicated bins with 60 GeV $< m_{jj} <$ 120 GeV

Future binning for $t\bar{t}H$

- Currently one inclusive bin for $t\bar{t}H$
- Consider to introduce a split by p_T^H : [0,200] and [200, ∞] (separating non-boosted and boosted analyses)
 - ★ Consider to split [0, 200] into =0j and \geq 1j (in addition to $t\bar{t}H$ signal jets)

Other topics discussed.

Including final state observables

- ullet Angular information from $H o ZZ^*$ and $H o WW^*$ currently not available in STXS measurements by construction
- In the measurements, can measure sensitive quantities (e.g. decay angles) in (some) STXS bins
- Extend STXS framework to include final state observables (e.g. angular coefficients/POs)

How to treat out-of-fiducial corrections (for differential measurements)

- To apply corrections for experimentally inaccessible phase space regions
 - Essentially one can fix the cross section to the SM or fix the relative cross section between the fiducial and out-of-fiducial cross section to the SM
- To be followed up in the ATLAS-CMS combination group

Summary.

- STXS developed from discussions at Les Houches 2015
- After first experience with the measurements, discussions on specific topics
 - Presentation of results
 - ★ Parametrization of VBF and VH uncertainties
 - STXS bin definitions
 - Inclusion of final state observables
- To be continued in the context of the LHC Higgs XS WG and for the Les Houches proceedings