

Physik-Institut

EW corrections

Discussion

Nicolas Greiner

- What is the theoretical uncertainty of NLO EW result?
- What is the way / Is there a way to asses theoretical uncertainties?

- What is the theoretical uncertainty of NLO EW result?
- What is the way / Is there a way to asses theoretical uncertainties ?
 - QCD: TH uncertainty from PDF, log-dependence of virtuals on ren. scale, α_s (value + running)
 - EW: lpha fixed by renormalization arguments

$$\alpha(M_{\rm Z}) = \alpha(0)/[1 - \Delta\alpha(M_{\rm Z})]$$

$$\Delta\alpha(M_{\rm Z}) = \Pi_{f\neq \rm t}^{\gamma\gamma}(0) - \text{Re}\{\Pi_{f\neq \rm t}^{\gamma\gamma}(M_{\rm Z}^2)\} \approx \frac{\alpha(0)}{3\pi} \sum_{f\neq \rm t} N_f^{\rm c} Q_f^2 \left[\ln\left(\frac{M_{\rm Z}^2}{m_f^2}\right) - \frac{5}{3}\right]$$

-> cancels fermion mass logs from charge renormalization external photons: δZ_{AA} cancels logs from charge ren.

-> external photons couple with $\alpha(0)$

- What is the theoretical uncertainty of NLO EW result?
- What is the way / Is there a way to asses theoretical uncertainties ?
 - QCD: TH uncertainty from PDF, log-dependence of virtuals on ren. scale, α_s (value + running)
 - EW: lpha fixed by renormalization arguments

$$\alpha_{G_F} \equiv \frac{\sqrt{2}G_F M_{\rm W}^2 (M_{\rm Z}^2 - M_{\rm W}^2)}{\pi M_{\rm Z}^2} = \alpha(0) \left(1 + \Delta r^{(1)}\right) + \mathcal{O}(\alpha^3)$$

- -> absorbs universal corrections to ren. of weak mixing angle
- \longrightarrow choice of α determined by process

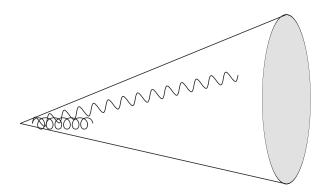
- What is the theoretical uncertainty of NLO EW result?
- What is the way / Is there a way to asses theoretical uncertainties ?
 - EW:
 - QCD + EW vs QCDxEW:

$$\begin{split} \sigma_{QCD+EW}^{NLO} &= \sigma^{LO} + \delta\sigma_{QCD}^{NLO} + \delta\sigma_{EW}^{NLO} \\ \sigma_{QCD \times EW}^{NLO} &= \sigma^{LO} + \delta\sigma_{QCD}^{NLO} + \delta\sigma_{EW}^{NLO} + \frac{\delta\sigma_{QCD}^{NLO} \cdot \delta\sigma_{EW}^{NLO}}{\sigma^{LO}} \end{split}$$

Treat photons and partons on the same footing

Becomes relevant in EW corrections (photon radiation) or identified photon in final state at LO.

Treat photons and partons on the same footing


Becomes relevant in EW corrections (photon radiation) or identified photon in final state at LO.

- 1. Feed everything into a jet algorithm (needed anyway in real rad. in EW corr.)
- 2. Decide based on the jet constituents if photon isolation is fulfilled (if necessary)

Treat photons and partons on the same footing

Becomes relevant in EW corrections (photon radiation) or identified photon in final state at LO.

- 1. Feed everything into a jet algorithm (needed anyway in real rad. in EW corr.)
- Decide based on the jet constituents if photon isolation is fulfilled (if necessary)
- 3. Both QED and QCD singularities occurring

Leads to QCD singularities

- -> Needs to regularized by QCD corrections
- -> Mixing of order at LO

- Clean and unambigious strategy (otherwise: first photon isolation then jet clustering or vice versa? possible double counting of parton, might even be infrared unsafe
- No need to apply any photon isolation criterion / fragmentation function on parton level. Can be done after parton shower

BLHA interface

- Version 2 contains all necessary building blocks to incorporate EW corrections
- Might need some refinements for color- and spin correlated terms.

GoSam + Sherpa:

EW interface essentially identical to QCD interface

OLP_GetProcessnumber(process, nr)
makes contract file obsolete

OLP_EvalSubProcess_EW((label, momenta, mu, restot, acc)) identical syntax as for QCD, accuracy not supported at the moment as not used.