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Subtraction Methods at NNLO

KBasic iIdea: identify a function S which: \
> reproduces the matrix elements in the unresolved limits;
> Is (relatively) simple and can be integrated over the unresolved phase space.

» Subtract and add back:

/|M| FJd¢d—/(|MJ|2FJ— d¢4+/5d¢d

/ Finite: Counterterm;
5 iy
\ ivergent integrate in 4-dim. Explicit singularities /
/ e Pros:  Cons: \
v Local — better numerical stability. x Difficult to identify good
v No issues of cutoff or power subtraction function.
Cérfec_tlons- | x Highly non-trivial to integrate
v Historically, subtraction counterterm — singularities
outperformed slicing at NLO. overlap

. /
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The NNLO Revolution (continues?)

« Great phenomenological success for a variety of 2->2 processes across
the LHC SM programme.

« BUT: None of the subtraction schemes are completely satisfactory (esp.
compared to NLO):

> Local
» Subtraction point-by-point in phase space.
» Clear physical origins of singularities.
» Avoid large numerical cancellations in intermediate steps.
> Analytic
» Poles cancel explicit — full control over singularity structures.
» Improved numerical efficiency.

> Generic

» Accommodate arbitrary production processes at the LHC, including massive quarks.
> Minimal

» Clear origin of singularities.

» Easier for others to implement.
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Nested Soft-Collinear Subtractions

[Caola, Melnikov, R.R. ‘17]

ldea: extend FKS subtraction to NNLO.
> Fully local.

Difficulty: overlapping singularities in the integration of the
counterterm.

E.g. q¢(p1)a(p2) =V +g(ps) +9(ps) :

IR singularities from

> g4 and gs soft (double soft)

> g4 Or gs soft (single soft)

> g4 and g5 collinear to either g or gb (triple collinear)

> g4 or gs collinear to either g or gb, or g4 and g5 collinear to each other
(single collinear)

> Singularities overlap (physical feature of QCD at NNLO).
> Look at Feynman diagrams --> soft and collinear overlap!
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Color coherence

* On-shell, gauge-invariant QCD scattering amplitudes : color coherence.
» Used in resummation & parton showers; not manifest in subtractions.

. cannot resolve details of collinear splittings; only sensitive to total

color charge.

== N0 overlap between soft and collinear limits -- can be treated
iIndependently:

* Regularize soft singularities first, then collinear singularities.
* Energies and angles decouple.
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Removing Soft Singularities

* Introduce energy ordering to remove trivial overlapping soft
singularities.

» Regulate soft singularities as in FKS

(Fra(1,2,4,5)) = ($Fram(1,2,4,5)) + (S5(I — $)Frar(1,2,4,5))
+ (I = S5)(I = $)Fra(1,2,4,5)).

* Analytic expressions for single and double soft
counterterms.

[Delto, Caola, Frellesvig, Melnikov ‘18]

« Soft subtracted term has only collinear divergences.

> Remove these using sector decomposition, a la STRIPPER
[Czakon ‘10, ‘11]
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Phase-space partitioning

 Introduce phase-space partitions

1 — 415 4 2425 4 14,25 | /15,24

with

Crow'™! = Crow'™ 1! =0 — w'1® contains Cy1, Cs1, Cis
041’11}24’25 = 051’(1)24’25 =0 w24’25 contains 042, 052, 045
Triple collinear %% Q&%

partition I . Q 2 1 A O

and

Crow'*? = Csiw'*? = Cpsw®?® =0 - w*?° contains Ca1, Cs
Cyw'®?* = Coow'®* = Cprw®?* =0 w'®?* contains Cyy, Cs;

. 4 5
Double collinear %% f
partition 1 = ¢ : >
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Phase-space partitioning

* Double collinear partition — large rapidity difference.

4 5

%e@& Q ‘ /fé ~ NLO x NLO = simple

 Triple collinear partition — large/small rapidity difference.

D= == 2] -
%"%%%Q 1 N

Overlapping singularities remain — need one last step to separate these.
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Sector Decomposition

« Step 5: Sector decomposition:

« Define angular ordering to separate singularities.

1:9<7751<%)+0<%<7751<7741>

—|—(9(7741 < %)4‘9(% < M41 <7751)

= g(a) 4 g) 4 glc) 4 g(d)

Nij = Pij/2

A
151

 Thus the limits are

(a) * (b)
0 Cs o

» Large rapidity difference
9(C> . 041

9(b> : Cys » 7141
» Small rapidity difference
0D : Cys

J

« Sectors a,c and b,d same to 4 < 5, but recall energy ordering.
* Implemented through angular phase space parametrization [Czakon ‘10].
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Removing Collinear Singularities

» Starting from the soft subtracted term, subtract single
and triple collinear configurations (using partitioning +
sector decomposition).

* Analytic expressions for integrated triple collinear
counterterms computed recently [Delto, Melnikov ‘19].

 All singularities removed through nested subtractions.

> Follows naturally from separation of soft and collinear
divergences.
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Nested Soft-Collinear Subtractions

The method is therefore:
 Fully local.
 Fully analytic.

« Minimal — regulate only those physical singularities appearing in
QCD, in each partition and sector.

* Flexible — it is not tied to any parametrization.

> STRIPPER parametrization used at present but one could explore
different parametrizations.

How does it do In practice?
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v Drell-Yan production
v Higgs production

Validation of Results

» Exhaustively tested against analytic results for

[Hamberg, Matsuura, van Neerven ‘89]

[Anastasiou, Melnikov ‘04]

 Good control in extreme

kinematic regions.
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[Caola, Melnikov, R.R. ‘17]

« < per mille agreement for all NNLO
contributions, including numerically tiny ones.

‘ Channel | Color structures | Numerical result (nh) | Analytic result (nb) |
GG — gy - 8.351(1) 8.3516
q4iQ; — qi4; CFTRnup, CrTrNan —21378(5) -2.13R2
Cr(Ca—2CF) —4.8048(3) - 1072 —4.8048 - 1072
CpTy 5.441(7)-1072 5.438-1072
Cr(Ca— 205) —9.26(1) - 104 —9.26- 104
\ a9 + 94; | = \ -9.002(9) \ -8.999 \
| 99 | = | L0772(1) | 10773 |

Table 1: Different contributions to the NNLO coefficient for on-shell Z production at the
13 TeV LHC with pur = pup = 2mz. All the color factors are included in the numerical

results. The residual Monte-Carlo integration error is shown in brackets. See text for
details.

[Caola, Melnikov, R.R. ‘19]

Reliable — able to compute NNLO corrections at
arbitrary precision.
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Validation of Results

Implies absolute control on physical results.

In 1 hour on a standard 1-core laptop:
* Higgs production, total cross section at one per mille:
P =17.03(0) pb; oRC =30.25(1) pb; o™EO = 39.96(2) pb.

« Drell-Yan production with symmetric cuts on leptons, cross
sections at 2 per mille.

otQ = 650.4 +0.1 pb; ohe® =700.24+ 0.3 pb; oR™NFO = 734.8 4+ 1.4 pb.
DY DY DY

* Very simple processes, but indicates that the method is
efficient.

e Can it do 2->3?7?77
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Building Towards Generality

Split pp — n parton process into:

Initial-Initial color  Final-Final color Initial-Final color
(color singlet (color singlet (deep inelastic
production) decay) scattering)

1. Consider color singlet production, color singlet decay, deep
Inelastic scattering in turn.

2. Compare against analytic results=— complete control on each
block.
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Building Towards Generality

Split pp — n parton process Into:

" /WORK IN \
\PROGRESS/

(COWY singlet ( v
production) decay) scatering)
[Caola, Melnikov, [Caola, Delto, [Asteriadis, Caola,
RR, 1902.02081] Melnikov, RR, Melnikov, RR,
1906.xXxXXX] 19yy.zzzz7]
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Building Towards Generality

Once the Il, FF and IF are in place, these can be
assembled for processes with 2->1 partons at Born
level (H+], V4, ...).

Going to 2->2 partons (e.g. dijet, H+2J) requires an
understanding of non-trivial color-correlations.

2->3 partons (e.g. trijet) does not provide any new
conceptual issues.

At this stage, difficult to comment on issues like
runtime, numerical stability, etc. for such high
multiplicity processes.
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Conclusions

» Despite success of IR subtraction schemes, ultimate
scheme yet to be developed.
* Proposed nested soft-collinear scheme:
> Fully local, fully analytic, minimal, flexible.
» Constructing a general subtraction framework for 2->2
& 2->3 partonic processes:
> Initial-initial partons (color singlet production) /
> Final-final partons (color singlet decay) /”
> Initial-final partons (DIS) ¢
> Color correlations

« Stay tuned...
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