

Progress in the Nested Soft-Collinear Subtraction Scheme

Raoul Röntsch

Les Houches Workshop

12 June 2019

Subtraction Methods at NNLO

- Basic idea: identify a **function S** which:
 - reproduces the matrix elements in the **unresolved limits**;
 - is (relatively) **simple** and can be **integrated** over the unresolved phase space.
- **Subtract** and add back:

$$\int |\mathcal{M}|^2 F_J d\phi_d = \int (|\mathcal{M}_J|^2 F_J - S) d\phi_d + \int S d\phi_d$$

Diagram annotations:
- A green arrow points to the first term $\int |\mathcal{M}|^2 F_J d\phi_d$ with the text "Divergent".
- A green arrow points to the second term $(|\mathcal{M}_J|^2 F_J - S)$ with the text "Finite; integrate in 4-dim.".
- A green arrow points to the third term $\int S d\phi_d$ with the text "Counterterm; Explicit singularities".

- Pros:
 - ✓ **Local** – better numerical stability.
 - ✓ No issues of cutoff or power corrections.
 - ✓ Historically, subtraction **outperformed** slicing at NLO.
- Cons:
 - ✗ **Difficult** to identify good subtraction function.
 - ✗ **Highly non-trivial** to integrate counterterm – singularities **overlap**.

The NNLO Revolution (continues?)

- Great phenomenological success for a variety of 2->2 processes across the LHC SM programme.
- BUT: None of the subtraction schemes are completely satisfactory (esp. compared to NLO):
 - **Local**
 - *Subtraction point-by-point in phase space.*
 - *Clear physical origins of singularities.*
 - *Avoid large numerical cancellations in intermediate steps.*
 - **Analytic**
 - *Poles cancel explicit – full control over singularity structures.*
 - *Improved numerical efficiency.*
 - **Generic**
 - *Accommodate arbitrary production processes at the LHC, including massive quarks.*
 - **Minimal**
 - *Clear origin of singularities.*
 - *Easier for others to implement.*

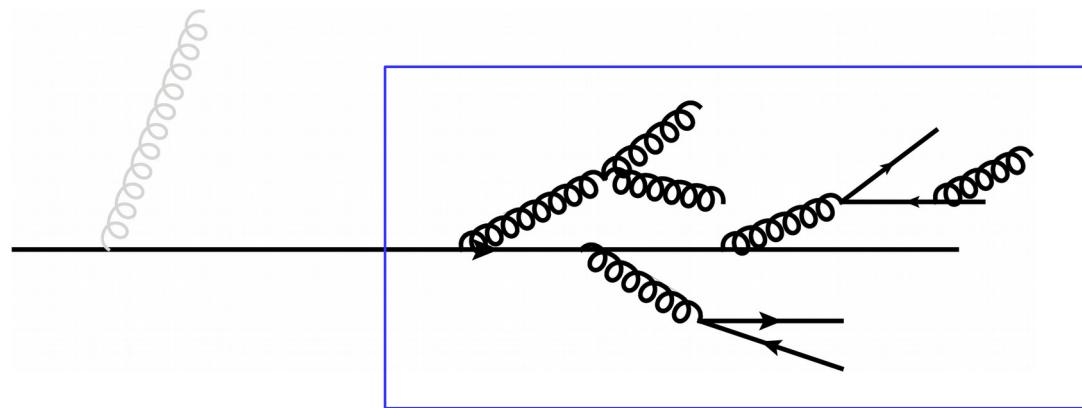
Nested Soft-Collinear Subtractions

[Caola, Melnikov, R.R. '17]

- Idea: extend FKS subtraction to NNLO.
 - Fully local.
- Difficulty: overlapping singularities in the integration of the counterterm.
- E.g. $q(p_1)\bar{q}(p_2) \rightarrow V + g(p_4) + g(p_5)$:
- IR singularities from
 - g_4 and g_5 soft (double soft)
 - g_4 or g_5 soft (single soft)
 - g_4 and g_5 collinear to either q or q_b (triple collinear)
 - g_4 or g_5 collinear to either q or q_b , or g_4 and g_5 collinear to each other (single collinear)
 - Singularities overlap (physical feature of QCD at NNLO).
 - Look at Feynman diagrams --> soft and collinear overlap!

Color coherence

- On-shell, gauge-invariant QCD scattering amplitudes : **color coherence**.
- Used in resummation & parton showers; **not manifest in subtractions**.
- Soft gluon cannot resolve details of collinear splittings; only sensitive to **total color charge**.



→ No overlap between soft and collinear limits -- can be treated independently:

- Regularize soft singularities first, then collinear singularities.
- Energies and angles **decouple**.

Removing Soft Singularities

- Introduce energy ordering to remove trivial overlapping soft singularities.
- Regulate soft singularities as in FKS

$$\begin{aligned}\langle F_{LM}(1, 2, 4, 5) \rangle &= \langle \mathbb{S} F_{LM}(1, 2, 4, 5) \rangle + \langle \mathcal{S}_5(I - \mathbb{S}) F_{LM}(1, 2, 4, 5) \rangle \\ &\quad + \langle (I - S_5)(I - \mathbb{S}) F_{LM}(1, 2, 4, 5) \rangle.\end{aligned}$$

- Analytic expressions for **single** and **double** soft counterterms.

[Delto, Caola, Frellesvig, Melnikov '18]

- **Soft subtracted term** has only collinear divergences.
 - Remove these using sector decomposition, a la STRIPPER

[Czakon '10, '11]

Phase-space partitioning

- Introduce **phase-space partitions**

$$1 = w^{14,15} + w^{24,25} + w^{14,25} + w^{15,24}.$$

with

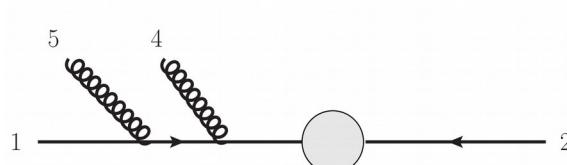
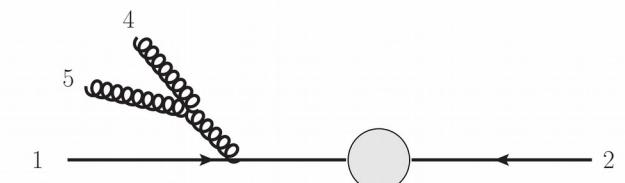
$$C_{42}w^{14,15} = C_{52}w^{14,15} = 0$$

$$C_{41}w^{24,25} = C_{51}w^{24,25} = 0$$

$w^{14,15}$ contains C_{41}, C_{51}, C_{45}

$w^{24,25}$ contains C_{42}, C_{52}, C_{45}

**Triple collinear
partition**



and

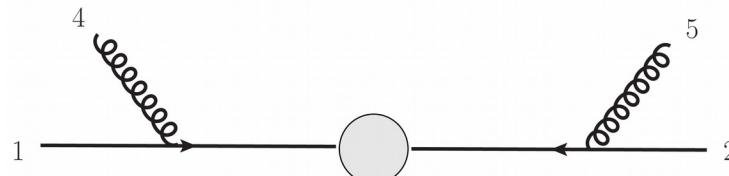
$$C_{42}w^{14,25} = C_{51}w^{14,25} = C_{45}w^{14,25} = 0$$

$$C_{41}w^{15,24} = C_{52}w^{15,24} = C_{45}w^{15,24} = 0$$

$w^{14,25}$ contains C_{41}, C_{52}

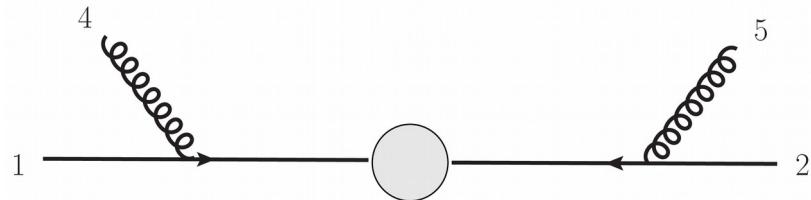
$w^{15,24}$ contains C_{42}, C_{51}

**Double collinear
partition**



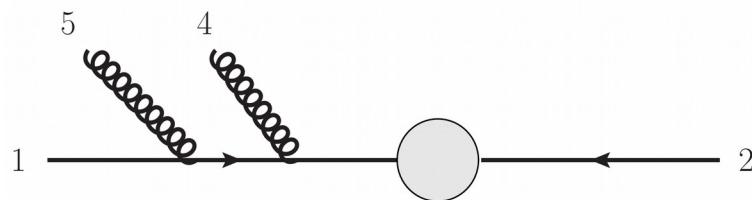
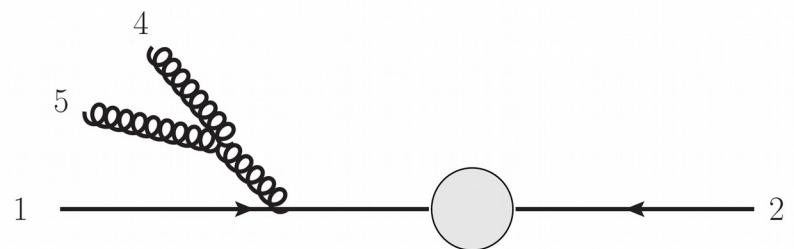
Phase-space partitioning

- Double collinear partition – large rapidity difference.



$\sim \text{NLO} \times \text{NLO} \rightarrow \text{simple}$

- Triple collinear partition – large/small rapidity difference.



Overlapping singularities remain – need one last step to separate these.

Sector Decomposition

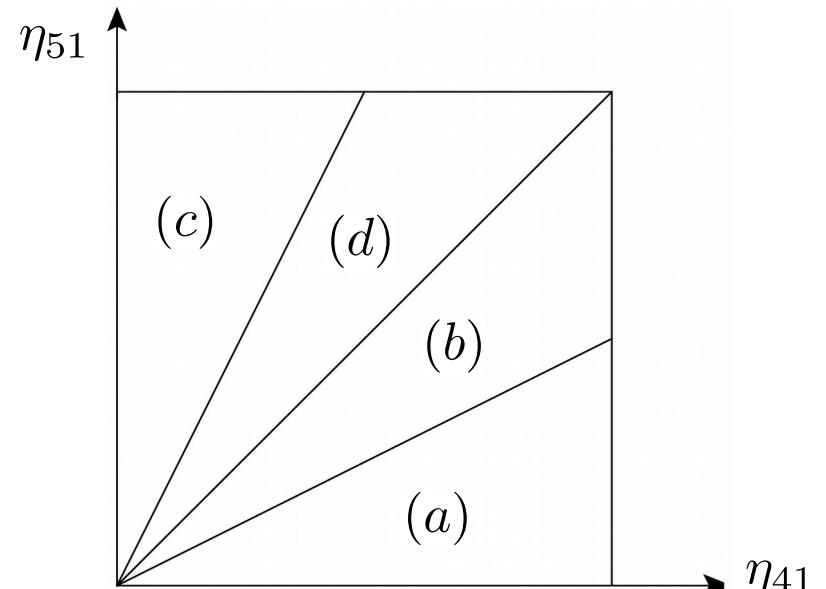
- Step 5: **Sector decomposition:**
- Define angular ordering to separate singularities.

$$\eta_{ij} = \rho_{ij}/2$$

$$\begin{aligned} 1 &= \theta\left(\eta_{51} < \frac{\eta_{41}}{2}\right) + \theta\left(\frac{\eta_{41}}{2} < \eta_{51} < \eta_{41}\right) \\ &\quad + \theta\left(\eta_{41} < \frac{\eta_{51}}{2}\right) + \theta\left(\frac{\eta_{51}}{2} < \eta_{41} < \eta_{51}\right) \\ &\equiv \theta^{(a)} + \theta^{(b)} + \theta^{(c)} + \theta^{(d)}. \end{aligned}$$

- Thus the limits are

$$\left. \begin{array}{l} \theta^{(a)} : C_{51} \\ \theta^{(c)} : C_{41} \\ \theta^{(b)} : C_{45} \\ \theta^{(d)} : C_{45} \end{array} \right\} \begin{array}{l} \text{Large rapidity difference} \\ \text{Small rapidity difference} \end{array}$$



- Sectors *a,c* and *b,d* same to $4 \leftrightarrow 5$, but recall energy ordering.
- Implemented through angular phase space parametrization [Czakon '10].

Removing Collinear Singularities

- Starting from the **soft subtracted term**, subtract single and triple collinear configurations (using partitioning + sector decomposition).
- **Analytic expressions** for integrated triple collinear counterterms computed recently [[Delto, Melnikov '19](#)].
- All singularities removed through **nested subtractions**.
 - Follows naturally from separation of soft and collinear divergences.

Nested Soft-Collinear Subtractions

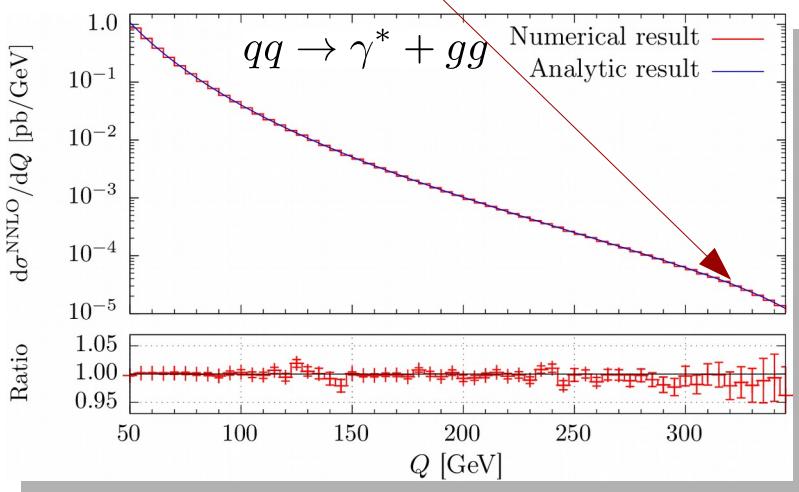
The method is therefore:

- Fully **local**.
- Fully **analytic**.
- **Minimal** – regulate only those physical singularities appearing in QCD, in each partition and sector.
- **Flexible** – it is not tied to any parametrization.
 - STRIPPER parametrization used at present but one could explore different parametrizations.

How does it do in practice?

Validation of Results

- Exhaustively tested against analytic results for
 - ✓ Drell-Yan production [Hamberg, Matsuura, van Neerven '89]
 - ✓ Higgs production [Anastasiou, Melnikov '04]
- Good control in **extreme kinematic regions**.
- $<$ per mille agreement for all NNLO **contributions**, including **numerically tiny ones**.



[Caola, Melnikov, R.R. '17]

Channel	Color structures	Numerical result (nb)	Analytic result (nb)
$q_i \bar{q}_i \rightarrow gg$	–	8.351(1)	8.3516
$q_i \bar{q}_i \rightarrow q_j \bar{q}_j$	$C_F T_R n_{up}$, $C_F T_R n_{dn}$ $C_F(C_A - 2C_F)$ $C_F T_R$	$-2.1378(5)$ $-4.8048(3) \cdot 10^{-2}$ $5.441(7) \cdot 10^{-2}$	-2.1382 $-4.8048 \cdot 10^{-2}$ $5.438 \cdot 10^{-2}$
$q_i q_j \rightarrow q_i q_j$ ($i \neq j$)	$C_F T_R$ $C_F(C_A - 2C_F)$	0.4182(5) $-9.26(1) \cdot 10^{-4}$	0.4180 $-9.26 \cdot 10^{-4}$
$q_i g + g q_i$	–	-9.002(9)	-8.999
gg	–	1.0772(1)	1.0773

Table 1: Different contributions to the NNLO *coefficient* for on-shell Z production at the 13 TeV LHC with $\mu_R = \mu_F = 2m_Z$. All the color factors are included in the numerical results. The residual Monte-Carlo integration error is shown in brackets. See text for details.

[Caola, Melnikov, R.R. '19]

Reliable – able to compute NNLO corrections at arbitrary precision.

Validation of Results

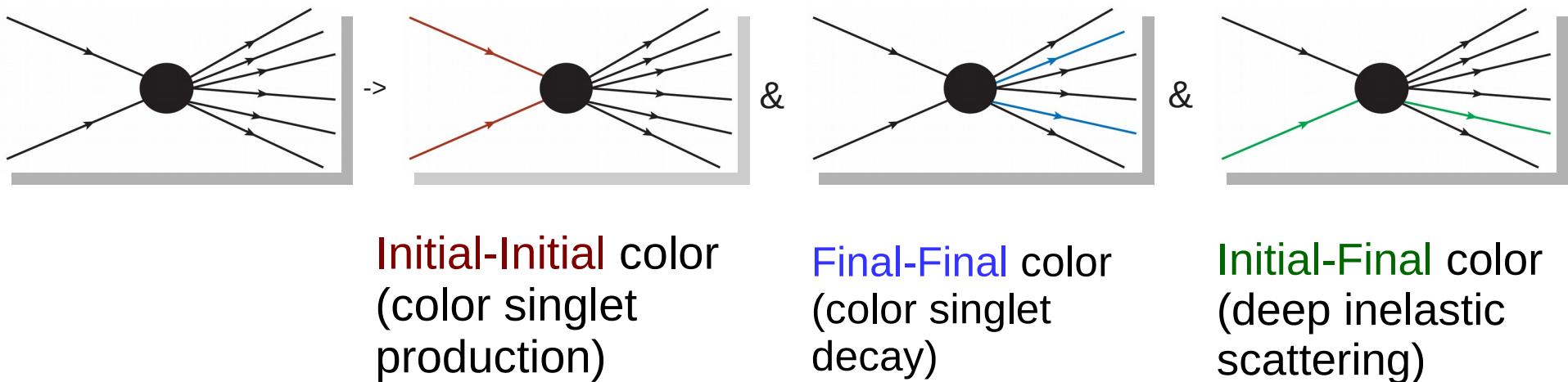
Implies **absolute control** on physical results.

In 1 hour on a standard 1-core laptop:

- Higgs production, total cross section at **one per mille**:
 $\sigma_H^{\text{LO}} = 17.03(0) \text{ pb}; \quad \sigma_H^{\text{NLO}} = 30.25(1) \text{ pb}; \quad \sigma_H^{\text{NNLO}} = 39.96(2) \text{ pb.}$
- Drell-Yan production with symmetric cuts on leptons, cross sections at **2 per mille**.
 $\sigma_{\text{DY}}^{\text{LO}} = 650.4 \pm 0.1 \text{ pb}; \quad \sigma_{\text{DY}}^{\text{NLO}} = 700.2 \pm 0.3 \text{ pb}; \quad \sigma_{\text{DY}}^{\text{NNLO}} = 734.8 \pm 1.4 \text{ pb.}$
- Very simple processes, but indicates that the method is **efficient**.
- **Can it do 2->3???**

Building Towards Generality

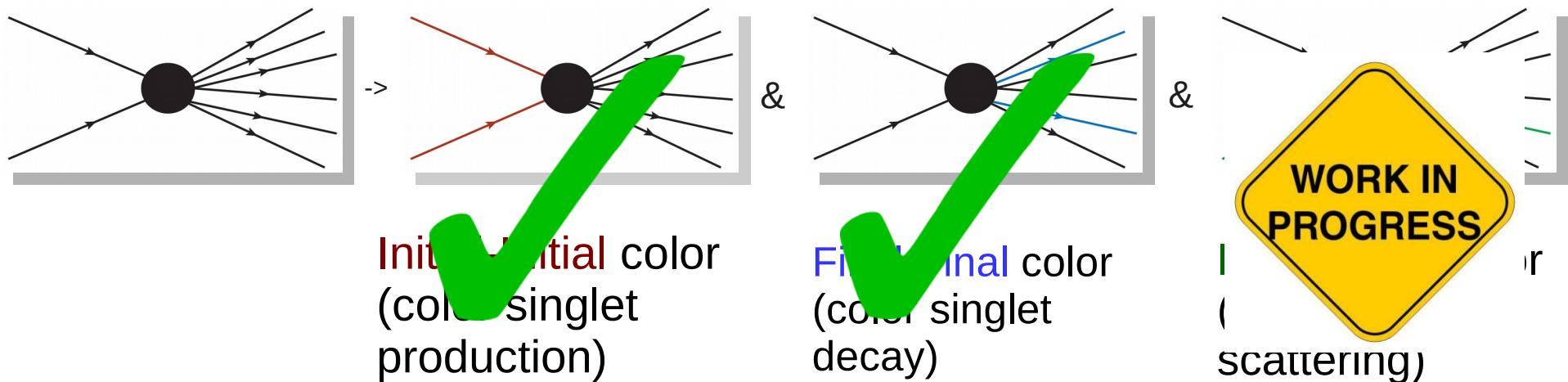
Split $pp \rightarrow n$ parton process into:



1. Consider **color singlet production**, **color singlet decay**, **deep inelastic scattering** in turn.
2. Compare against analytic results → **complete control** on each block.

Building Towards Generality

Split $pp \rightarrow n$ parton process into:



[Caola, Melnikov,
RR, 1902.02081]

[Caola, Delto,
Melnikov, RR,
1906.xxxxx]

[Asteriadis, Caola,
Melnikov, RR,
19yy.zzzzz]

Building Towards Generality

- Once the **II**, **FF** and **IF** are in place, these can be assembled for processes with **2->1** partons at Born level ($H+j$, $V+j$, ...).
- Going to **2->2** partons (e.g. dijet, $H+2j$) requires an understanding of non-trivial **color-correlations**.
- **2->3** partons (e.g. trijet) does not provide any new conceptual issues.
- At this stage, difficult to comment on issues like runtime, numerical stability, etc. for such high multiplicity processes.

Conclusions

- Despite success of IR subtraction schemes, **ultimate scheme** yet to be developed.
- Proposed **nested soft-collinear scheme**:
 - Fully local, fully analytic, minimal, flexible.
- Constructing a general subtraction framework for 2->2 & 2->3 partonic processes:
 - Initial-initial partons (color singlet production) ✓
 - Final-final partons (color singlet decay) ✓
 - Initial-final partons (DIS)
 - Color correlations
- Stay tuned...