Charged Higgs Studies

Kétévi A. Assamagan

Charged Higgs Studies

Les Houches, May 27-June 6, 2003

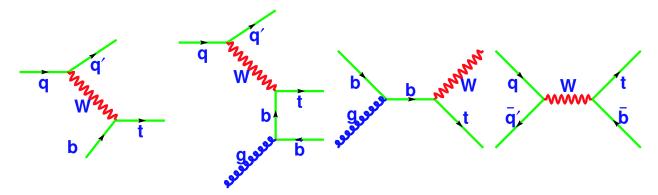
BROOKHAVEN NATIONAL LABORATORY

Outline

- Charged Higgs from top-quark decay in large extra dimensions
- Charged Higgs in the transition region: $m_{H^\pm} \sim m_t$
- ullet Prospects for H^\pm couplings determination

$$t
ightarrow b H^{\pm} \left(
ightarrow au \psi
ight)$$
 in LED

Kétévi A. Assamagan & Aldo Deandrea


- In the SM, $t \to Wb$ with $\sim 100\%$ branching
- In supersymmetric models,

$$\begin{array}{ccc} t & \to & W^{\pm}b \\ t & \to & H^{\pm}b \\ t & \to & \tilde{t}\tilde{\chi}_{i}^{0} \end{array}$$

- In large extra dimensions, $H^- \to \tau^- \psi$ can be enhanced due the large number of KK modes of the bulk neutrino ψ
- In models with FCNC or LFV at tree level (for instance 2HDM-III): $t \to c\gamma$, $t \to cZ$, $t \to ch$
- \Rightarrow A model independent measurement of Γ_t may signal new physics
- \Rightarrow measurements of $BR(t \to Wb)$, V_{tb} and Γ_t are of prime importance.

The Case of the SM

 $\Gamma\left(t \to Wb\right)$ can be extracted from single top quark production

$$\sigma_{Wg}$$
 and $\sigma_{W*} \propto \Gamma\left(t \to Wb\right)$

By measuring $BR\left(t
ightarrow Wb
ight)$ in $gg
ightarrow tar{t}$,

$$\Gamma_t = \frac{\Gamma(t \to Wb)}{BR(t \to Wb)}$$

 $BR(t \to Wb)$ measured in $t\bar{t}$ events using ratios of BRs:

- lepton+jets sample: ratio of single to double b-tags: $\frac{BR(t \rightarrow Wb)}{BR(t \rightarrow Wq)}$
- Ratio of single to di-lepton events: $\frac{BR(t \rightarrow Wq)}{BR(t \rightarrow non W + X)}$

The Case of the 2HDM-I, II

- If kinematically allowed, $t \to bH^+$ would compete with $t \to bW^+$
- $\Gamma\left(t \to bW^+\right)$ is unchanged $\Rightarrow W$ -gluon fusion process is not modified
- ullet One can extract Γ_t in the same way as in the SM case,i.e., getting $\Gamma\left(t \to Wb\right)$ from the measured cross section and $BR\left(t \to Wb\right)$ from $t\bar{t}$ events
- Excess of τ leptons from $H^{\pm} \to \tau^{\pm} \nu_{\tau} \Rightarrow$ violation of lepton universality in the top quark sector.

The Case of Large Extra Dimensions

- Assume no additional Higgs bosons other than those of 2HDM-I or II
- H^{\pm} production mechanisms:

-
$$m_{H^{\pm}} > m_t$$
: $gb \to tH^{\pm}$ and $gg \to tbH^{\pm}$

-
$$m_{H^{\pm}} \sim m_t$$
: $gg \rightarrow tbH^{\pm}$

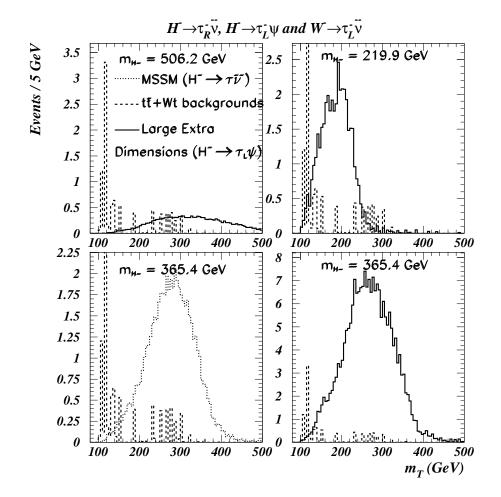
-
$$m_{H^{\pm}} < m_t : t \to bH^{\pm}$$

• In 2HDM-II,

$$H^- \to \tau_R^- \bar{\nu},$$

 H^- to au_L^- suppressed

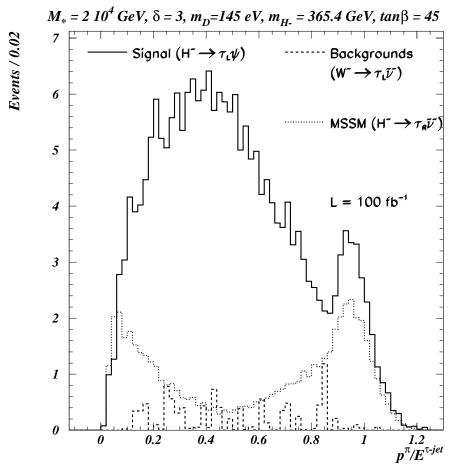
• In Large Extra Dimensions, $H^- \to \tau_L^- \psi$ can be enhanced by large number of KK states. Thus,


$$H^- \to \tau_R^- \bar{\nu} + \tau_L^- \psi$$

with an asymmetry depending on the parameters M_* , δ_{ν} , δ , m_D , $\tan \beta$ and $m_{H^{\pm}}$.

$$H^- \to \tau_L^- \psi + c.c.$$

 $m_{H^\pm}>m_t~H^- \to \tau_L^- \psi$ at the LHC: Assamagan & Deandrea, Phy. Rev. D65 076006 (2002)


$$m_T = \sqrt{2p_T^{\tau} p_T \left[1 - \cos(\Delta \phi)\right]}$$

 \Rightarrow Observation of signal in m_T distribution is not sufficient to distinguish between 2HDM (MSSM) and L.E.D.

$$H^- \to \tau_L^- \psi + c.c.$$

Additionally, reconstruct the fraction of energy carried by the charged track in 1-prong au decays

 \Rightarrow The reconstruction of m_T and of $p^\pi/E^{\tau-jet}$ should determine the scenario: 2HDM (MSSM) or L.E.D.

Further measurement of the asymmetry may provide a distinctive signature for L.E.D.

The Case of Large Extra Dimensions

$$m_{H^{\pm}} < m_t$$

- Enhancement of $H^- \to \tau_L^- \psi$ due to KK modes
- $H^- \to \tau_R^- \bar{\nu} + \tau_L^- \psi$
- Effectively, this means one additional decay mode of the top quark:

$$\bar{t} \to \bar{b} \tau_L \psi$$

mediated by the H^{\pm}

$$\Gamma(t \to bW^+) \approx \frac{G_F m_t^3}{8\pi\sqrt{2}} |V_{tb}|^2 (1 - x_W^2) (1 + x_W^2 - 2x_W^4)$$

$$\Gamma(\bar{t} \to \bar{b}\tau_L \psi) \sim \frac{\sqrt{2}G_F m_t^3}{192\pi^3} \cot^4 \beta \left(\frac{m}{v}\right)^2 \left(\frac{m_t}{m_{H^{\pm}}}\right)^4$$

$$\times \left(\frac{m_t}{M_*}\right)^{\delta} \left(\frac{M_{Pl}}{M_*}\right)^2$$

The Case of Large Extra Dimensions

$$\frac{\Gamma(\bar{t} \to \bar{b}\tau_L \psi)}{\Gamma(t \to b\tau^+ \nu)} \sim \frac{9\sqrt{2}}{0.624\pi^2} \cot^4 \beta \left(\frac{m}{v}\right)^2 \times \left(\frac{m_t}{m_{H^{\pm}}}\right)^4 \left(\frac{m_t}{M_*}\right)^{\delta} \left(\frac{M_{Pl}}{M_*}\right)^2$$

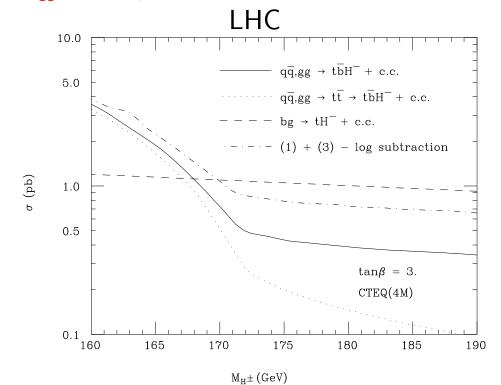
Example:

 $m^2 \sim 10^{-2}$ (eV)², $\tan \beta \sim 2$, $M_* \sim 2$ TeV, $\delta = 3$ and $m_{H^\pm} \sim 200$ GeV \Rightarrow an enhancement of 100%!

- If $m_{\nu_e} \sim m_{\nu_{\mu}} \sim m_{\nu_{\tau}}$, then similar enhancement in $t \to b e^+ \nu_e$ and $t \to b \mu^+ \nu_{\mu}$ otherwise these 2 would be unaffected \Rightarrow violation of lepton universality.
- Measuring top BRs and Γ_t to $\sim 10\%$ may allow to see this effect!
- Measuring Γ_t : same technique as in the 2HDM without large extra dimensions and as in the SM case because $\Gamma\left(t \to W^+ b\right)$ remains unaffected here too.

The Case of FCNC and LFV

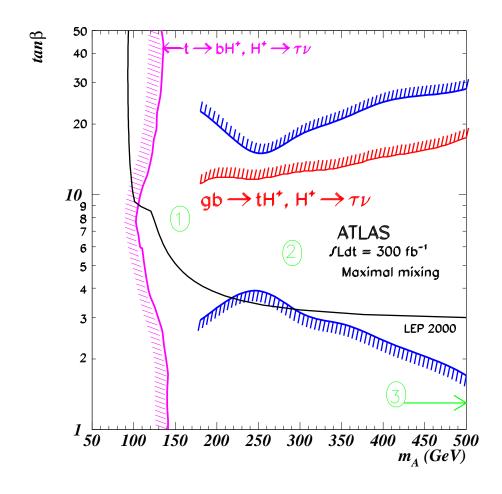
As a example, we take the 2HDM-III where no discrete symmetry suppresses FCNC nor LFV processes at tree level


- $t \to ch \ (h = h^0, H^0, A^0)$
- $t \rightarrow cg$, $t \rightarrow c\gamma$, $t \rightarrow cZ$
- This list of FCNC and LFV processes of the top quark is not exhaustive!
- the W-gluon fusion process may not be used any longer as a direct measure of $\Gamma\left(t\to Wb\right)$ because of additional contributions such as a t-channel $qq'\to ct$ mediated by a Z
- The s-channel W^* may also be affected by s-channel $q\bar{q} \to t\bar{c}$.
- The W-t-b vertex may be affected \Rightarrow all 3 modes of single top affected but $BR(t \to W^+b) \approx SM$ value. Measuring Γ_t same as in SM.

The Plan/Proposal

- Study the prospects for measuring Γ_t at the LHC:
 - (a) Determine $\Gamma (t \to W^+ b)$ from the measured Wg and W* cross sections. The uncertainty in the cross section is the uncertain in $\Gamma (t \to W^+ b)$
 - **(b)** Determine $BR(t \to W^+b)$ from ratios of BRs in $t\bar{t}$ events
 - (c) Determine Γ_t from (a) and (b).
- The above method should be valid for the SM, the 2HDM-I and II and large extra dimensions assuming no FCNC and LFV

H^{\pm} in Transition Region


- For $m_{H^\pm} < m_t$:
 - $t \rightarrow bH^{\pm}$ where $gg, qq \rightarrow t\bar{t}$
 - Narrow Width Approximation: $gg,qq \rightarrow t\bar{t} \times t \rightarrow bH^{\pm}$
- For $m_{H^\pm} \sim m_t$: NWA does not work

- Use instead: $gg \to tbH^{\pm}$ instead of $gg, qq \to t\bar{t}$ with $t \to bH^{\pm}$ $(gb \to tH^{\pm})$
- $-H^{\pm} \rightarrow \tau \nu$

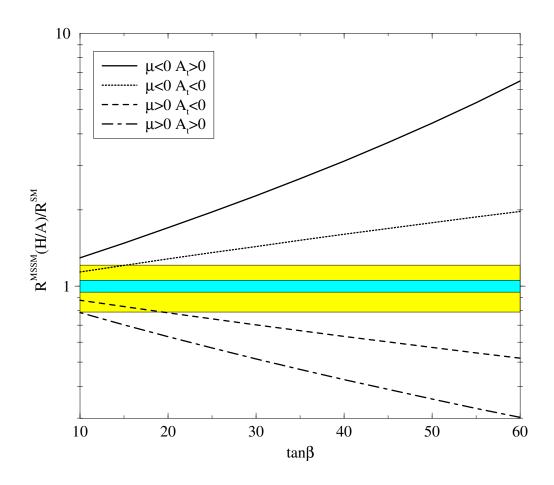
H^{\pm} in Transition Region

Also to cover the area around $m_A \sim 160$ GeV in the discovery contour

Determination of Ratios of Couplings

- K. Assamagan, J. Guasch, S. Moretti & S. Penaranda Rivas
- $\Gamma(H/A \to \tau^+\tau^-)$, $\Gamma(H/A \to b\bar{b})$, $\Gamma(H^+ \to \tau^+\nu_\tau) \propto \tan\beta^2$, $\Gamma(H^+ \to t\bar{b}) \propto \tan\beta^2 (\tan\beta \gtrsim 10)$
- But large corrections: $h_b^{eff} = \frac{m_b(Q)}{1 + \Delta m_b}$ Δm_b is a non-decoupling quantity:

$$\Delta m_b \simeq -\alpha_s \frac{\mu \, m_{\tilde{g}}}{M_{\tilde{b}}^2} \tan \beta$$


 \Longrightarrow but different $\Delta m_b, \Delta m_\tau$ corrections!

$$R = \frac{BR(H/A \to b\bar{b})}{BR(H/A \to \tau^+\tau^-)} = \frac{BR(H^+ \to t\bar{b})}{BR(H^+ \to \tau^+\nu_\tau)}$$

$$R^{tree} = R^{SM} = \frac{3m_b^2(Q)}{m_\tau^2} \simeq 8.02(Q = 115 \text{ GeV})$$

$$\frac{R^{eff}}{R^{tree}} = \frac{\tan \beta_b^{eff}}{\tan \beta_\tau^{eff}}$$

Determination of Ratios of Couplings

- Prospects of the Determination of R in the H^\pm sector by measuing the ratio of rates in $\tau\nu$ and tb channels:
 - Determination of sign of $\boldsymbol{\mu}$
 - constraints on SUSY models

Conclusions

- We propose to study the prospects for the determination of the top quark width at the LHC
- Such a measurement can be obtained from the measured single top production cross (in the W-gluon fusion and W* channels) and from the measured $BR(t \to Wb)$ in $t\bar{t}$ events
- ullet A measurement at the level of $\sim 10\%$ would allow a test of the SM and other models including large extra dimensions with singlet neutrinos in the bulk (decay of the top-quark through a virtual charged Higgs)
- We also propose to study the discovery potential of H^{\pm} in the transition region using $gg \to tbH^{\pm}$ with $H^{\pm} \to \tau \nu$: $m_{H^{\pm}} \sim m_t$.
- Using $H^{\pm} \to \tau \nu$ and $H^{\pm} \to tb$, we will study the prospects for the determination of H^{\pm} couplings at large $\tan \beta$: to determine sign of μ and to constrain SUSY models