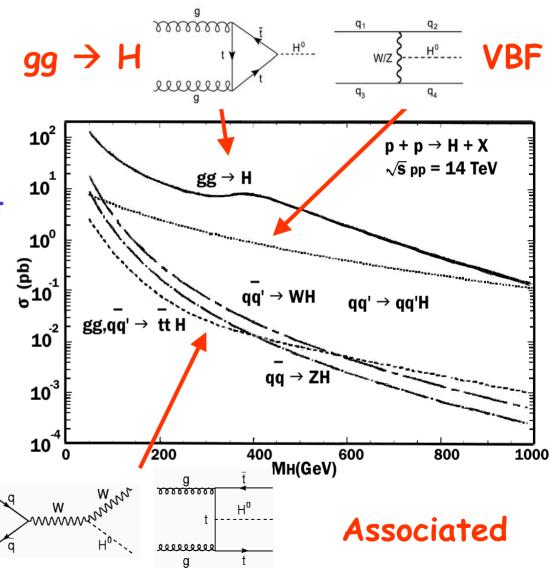
VBF Studies With ATLAS

Bruce Mellado University of Wisconsin

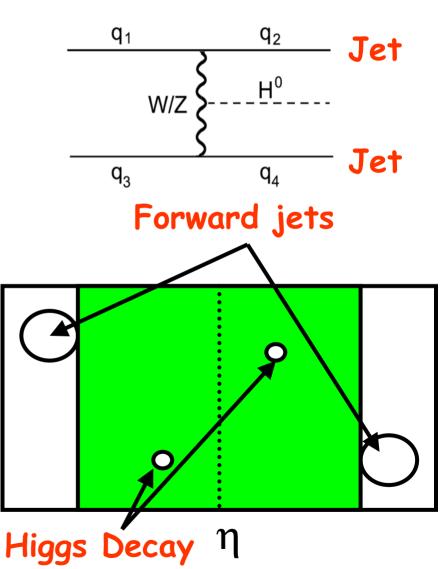
On behalf of the ATLAS Higgs Working Group

Higgs WG, Les Houches 2003

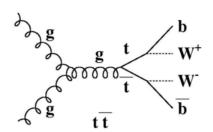


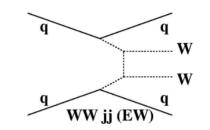
Outline

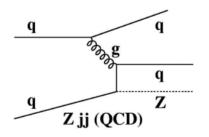
- **✓** Introduction
- ✓ Recent results of cut analyses
- ✓ Recent results of multivariate analyses
- ✓ Status of ongoing analyses
 - >Low mass Higgs
 - >Intermediate mass Higgs
- ✓ Work ahead
 - >Understanding of the central jet veto
- **✓** Conclusions

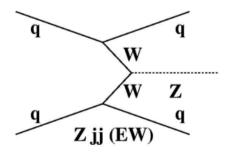

SM Higgs at LHC

- **✓** Production:
 - > Direct
 - \Leftrightarrow gg \rightarrow H
 - Dominant
 - ☐ Large background at masses close to LEP limit
 - qq →qqH (VBF)
 - ☐ Distinct final state
 - > Associated
 - * ttH, WH, ZH
 - ☐ Small cross-section

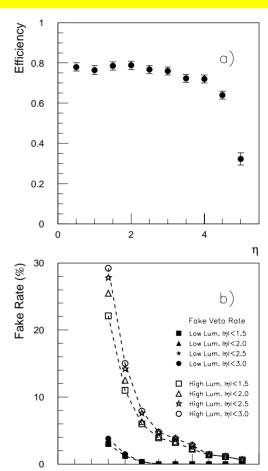

Higgs via VBF


- ✓ Wisconsin Phenomenology Institute (D.Rainwater, D.Zeppenfeld et al.):
 - > Two high P_T jets with large $\Delta \eta$ separation
 - > Strong discovery potential for low Higgs mass
 - Can measure Higgs couplings
 - > Good for invisible decays
- ✓ CMS & ATLAS looking into more detailed studies


Low Mass Higgs via VBF


- √H->WW*->IIvv, Ivqq. Strong for M_H>120 GeV
 - >Main background:
 - * tt EW, WWjj (IIvv)
 - * W + 4 jets (lvqq)

- √H->ττ->II, Ih (+ptmiss). Good around LEP limit
 - >Main background
 - * QCD and EW Zjj



- ✓ Under investigation
 - >H->bb. Useful for Yukawa coupling measurement
 - $>H->\gamma\gamma$. Study discovery potential
 - \clubsuit Main background, real and fake non-resonant $\gamma\gamma$

Major Experimental Issues

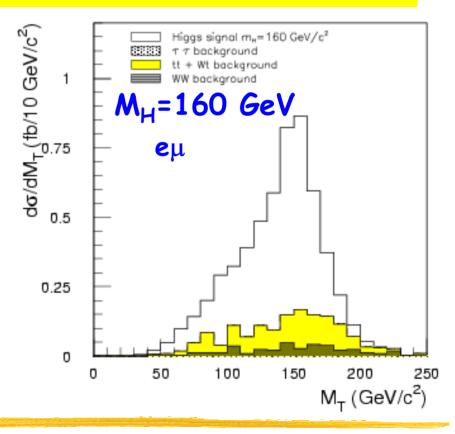
V. Cavasinni, D. Costanzo, I. Vivarelli ATL-PHYS-2002-008

- √ Tagging forward jets:
 - >Efficiencies critical
 - >Full simulation used
 - > Double tag efficiency ~50%
- ✓ Central jet veto:
 - >Pile up effects introduce fake central jets
 - * Effect small at low luminosity
 - Serious concern at high luminosity

P_T Veto Threshold (GeV/c)

VBF H->WW*

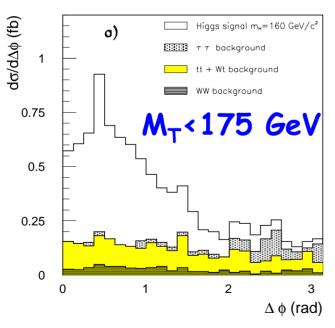
C.Buttar, R.Harper, K.Jakobs ATL-PHYS-2002-008


V. Cavasini, D. Contanzo, E. Mazzoni, I. Vivarelli ATL-PHYS-2002-010

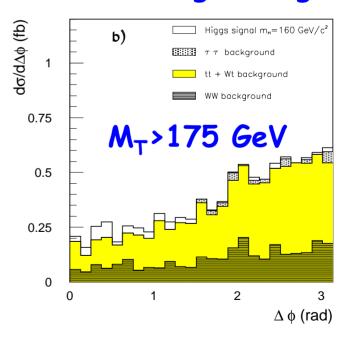
K.Cranmer, B.Mellado, W.Quayle, Sau Lan Wu ATL-PHYS-2003-002

- ✓ Background: tt, EW WWjj
 - >Understanding of tt production is crucial

- ✓ Background suppression:
 - >Well separated forward jets + central jet veto
 - >b-jet vetoes
 - >Lepton angular correlations


VBF H->WW*

C.Buttar, R.Harper, K.Jakobs ATL-PHYS-2002-008


✓ Evidence of Spin-O resonance in H->WW->II modes

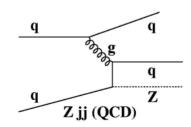
>Look into difference in \$\phi\$ between leptons

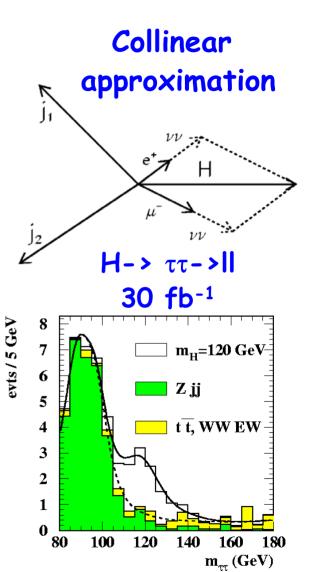
Signal Region

Outside Signal Region

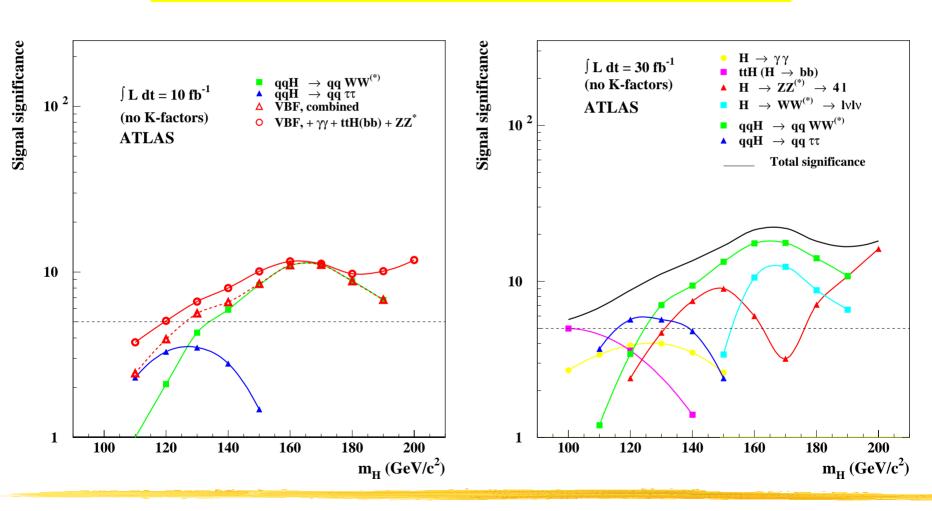
VBF H->ττ

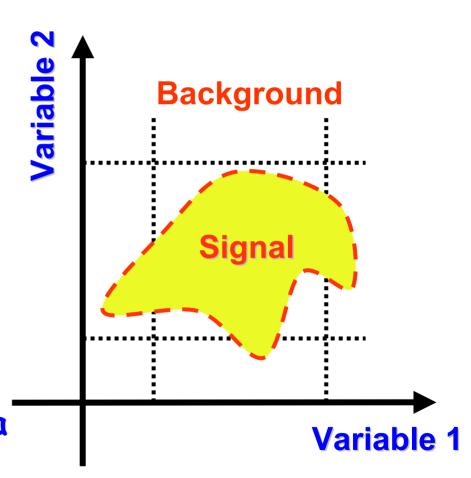
M. Klute ATL-PHYS-2002-018


G. Azuelos, R. Mazini ATL-PHYS-2003-004


T.Takemoto, S.Asai, J.Kanzaki, R.Tanaka ATL-PHYS-2003-004

K.Cranmer, B.Mellado, W.Quayle, Sau Lan Wu ATL-COM-PHYS-2003-002

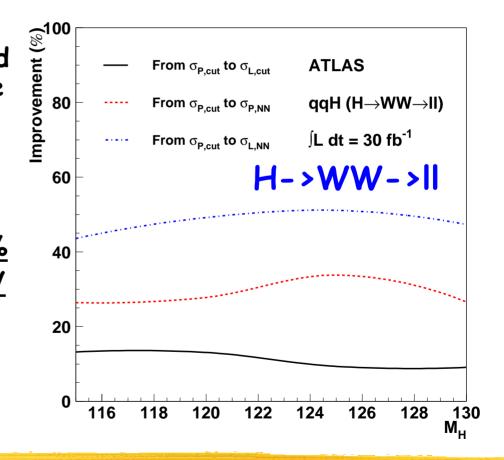

- $ightarrow M_{\tau\tau}$ reconstruction using collinear approximation
 - ❖ Mass resolution ~10%
- >Main backgrounds
 - * EW & QCD Zjj
 - * tt and W production


Results from VBF Cut Analyses

J. Asai et al. SN-ATLAS-2003-024

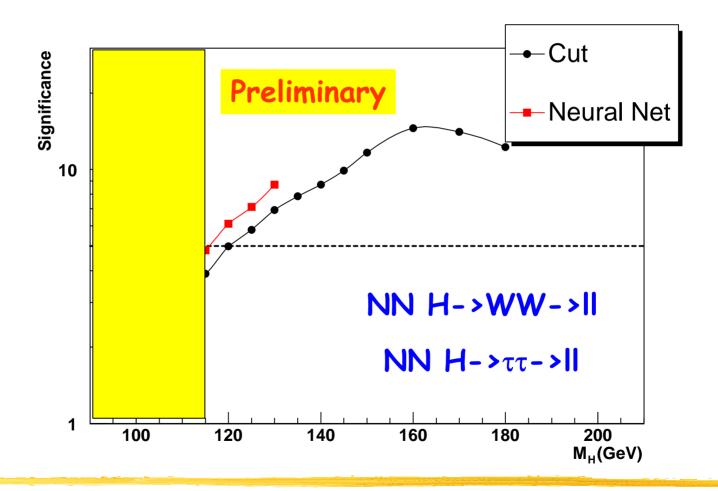
Multivariate Analysis (1)

- ✓ Classical cut analysis uses rectangular signal-like phase space
- ✓ Contour of signal-like phase space may be of any shape
- ✓ Disadvantage of cut analysis gets larger with increasing number of discriminating variables
- ✓ Use <u>Neural Networks</u> as a multivariate tool

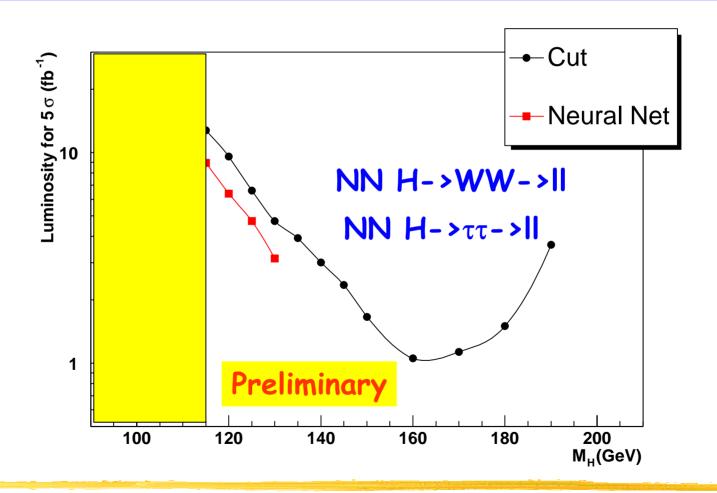

Multivariate Analysis (2)

- ✓ MC description needs a lot of improvement
 - >MC generators based mostly on LO ME calculations
 - > Based on fast simulation
 - * Need to tune it with full simulation and data
- ✓ Be careful: Cannot dump into NN any variable
 - >Infrared-safe variables
 - >Pursue features that will remain in the final analysis
- ✓ Need to understand cut analysis first
 - >Cut and multivariate analyses should go together when data comes (LEP experience)
 - ✓ Maximally exploit physics signatures, which are not taken full advantage of by the cut analysis

Multivariate Analysis (3)

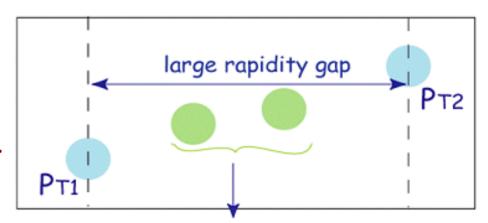

K.Cranmer, B.Mellado, W.Quayle, Sau Lan Wu ATL-PHYS-2003-002

- Signal significance improvement with neural network based analysis:
 - Neural network output used as a discriminating variable with likelihood techniques
 - > NN applied to H->WW->II and H-> $\tau\tau$ ->II
 - **Similar** results
 - Results improve by 45-50%
 - 5σ effect for M_H>115 GeV
 with one exp and 10 fb⁻¹
 provided nominal detector
 performance


Multivariate Analysis (4)

✓ Hopeful that one exp., 10 fb⁻¹: 5 σ for M_H \gtrsim 115 GeV

Multivariate Analysis (5)

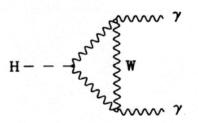

 \checkmark Hopeful that one exp., 10 fb⁻¹: 5 σ for M_H≥115 GeV

Ongoing Analyses: Yukawa Coupling from Hbb

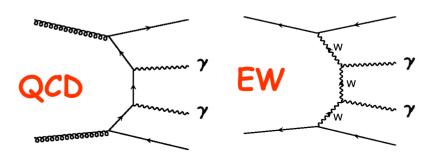
- √ VBF H->bb
 - >Good potential for Yukawa coupling measurement
 - > Hadronic final state
 - >Main concern is trigger
 - * Expect small efficiency
 - * Work needed to implement
 - For more information on coupling measurements see talk of M. Duehrssen

S. Asai, J. Kanzaki, S. Shimma

2 high PT jets between large rapidity gap.


Ongoing Analyses: VBF H-> $\gamma\gamma$ (1)

- ✓ VBF H->γγ
 - >Analyses are advanced
 - Signal production understood
 - \clubsuit Use ME for real $\gamma\gamma$
 - ☐ Comphep
 - ☐ MadgrapII
 - ☐ Different approaches to avoid QCD double counting
 - ☐ Reasonable agreement between groups
 - Comparison with D.Rainwater's thesis work:
 - \square Reasonable agreement achieved for signal and $\gamma\gamma$ production
 - ☐ Differences attributed to different choices of scales, pdf's, etc...

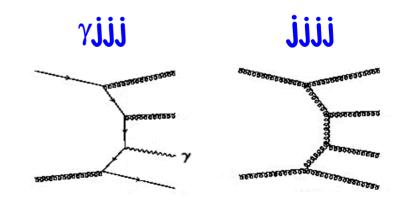

S. Asai, J. Kanzaki, M. Minagawa

K.Cranmer, B.Mellado, W.Quayle, Sau Lan Wu

Resonant $\gamma\gamma$

Non-resonant real $\gamma\gamma$

Ongoing Analyses: VBF H-> $\gamma\gamma$ (2)

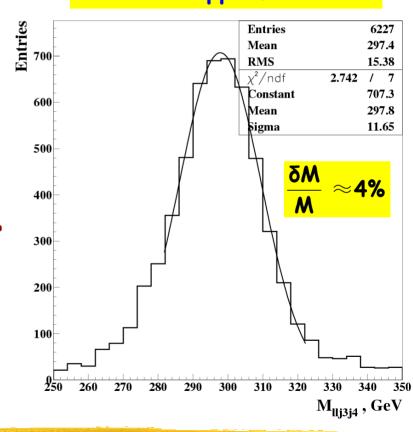

- ✓ VBF H->γγ
 - Bulk of disagreement between two ATLAS groups comes from treatment fake $\gamma\gamma$
 - Parton shower approach (γj + PS and jj + PS) underestimates background
 - Need to use full matrix element calculation
 - ☐ Use MadGraphII
 - Preliminarily, we expect to reach 2-4 σ for M_H=130 GeV with 30 fb⁻¹
 - Need to understand central jet veto survival probability
 - Understanding of jet rejection is crucial

S. Asai, J. Kanzaki, M. Minagawa

K.Cranmer, B.Mellado, W.Quayle, Sau Lan Wu

Non-resonant fake $\gamma\gamma$:

One or two jets are seen as a photon in the detector

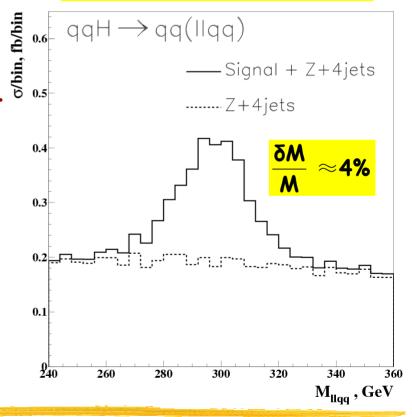


Ongoing Analyses: VBF for Intermediate Masses (1)

- √H->ZZ->IIqq
 - > Combinatorics not an issue
 - * After masking out two jets with Mqq \approx M_Z event looks like typical VBF
 - > Relatively narrow peak
 - * Simple minded performed without kinematic constraints yields $\delta M/M \approx 4\%$.
 - ❖ Expect improvement of a factor of 2 ($\delta M/M\approx 2\%$) when applying kinematic fit
 - ☐ Exploit the two additional constraints:

 $M_{II}=M_{Z}$ and $Mqq=M_{Z}$

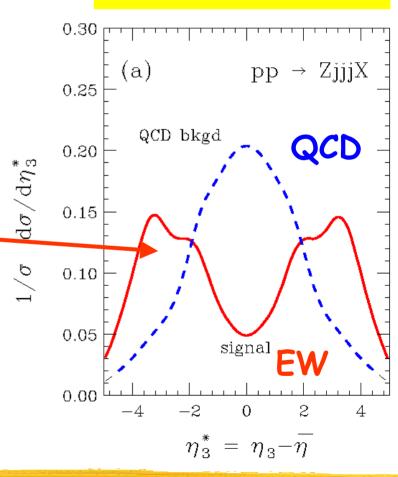
K.Cranmer, B.Mellado, W.Quayle, Sau Lan Wu in collaboration with D.Zeppenfeld



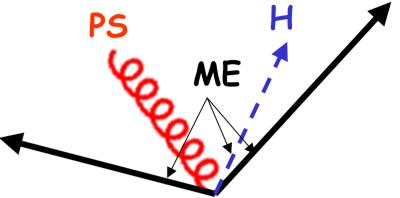
Ongoing Analyses: VBF for Intermediate Masses (2) H->ZZ->llqq

- Relatively narrow peak seen on top of a continuum
 - Background (Z+4jets) determined from side-bands
- Simple analysis yields 5.7 σ for $\frac{1}{2}$ $\frac{1}{2}$
 - * Expect factor of 2 improvement
 - ☐ Kinematic fit, exploit angular variable, multivariate analysis
- > Combined with H->WW->IIVV
 - ★ Competitive with inclusive H->ZZ->4I
 - Strong potential for couplings

$$\frac{\sigma \times BR(qqH \rightarrow qqWW)}{\sigma \times BR(qqH \rightarrow qqZZ)} = \frac{\Gamma_{HWW}}{\Gamma_{HZZ}}$$


K.Cranmer, B.Mellado, W.Quayle, Sau Lan Wu in collaboration with D.Zeppenfeld

Central Jet Veto (1)


- ✓ VBF analysis is an exclusive search:
 - > Two hard and well separated jets (tagging jets)
 - > Veto on third jet in central region of the detector.
 - Need to distinguish between QCD and EW processes —
- ✓ Need to implement higher order corrections
- ✓ A lot of MC development needed before turn on!

Zeppenfeld et al. PRD54 6680

Central Jet Veto (2)

- ✓ So far we used parton shower to simulate third jet
 - > Disagreement with full matrix element treatment
 - > Angular correlations may not be well simulated

Central jet veto survival probability

		H→WW->II		H→ττ->II	
D.Rainwater's thesis	Third jet	Hjj	††	Hjj	QCD Zjj
	Matrix Element	0.89	0.46	0.87	0.28
	Parton Shower	0.86	0.30	0.72	0.49

Summary

- ✓ VBF enhances sensitivity for Higgs searches
 - >Forward jet tagging efficiency crucial
 - Estimate role of pile up at high luminosity
 - >Neural Nets + likelihood techniques enhance signal significance by ~50%
 - ❖ 5σ effect for M_H>115 GeV with one experiment and 10 fb⁻¹ assuming expected detector performance
 - >VBF H->ZZ->llqq look in intermediate mass Higgs. Observe relatively narrow resonance (δM/M≈4%)
 - ❖ If combined with VBF H->WW->IIvv expect:
 - ☐ Signal significance competitive with inclusive H->ZZ->41
 - \Box Best way of measuring $\Gamma_{\rm HWW}/\Gamma_{\rm HZZ}$ in broad mass range
 - >A lot of MC development needed before turn on!
 - * Central jet veto needs to be better understood
 - * Higher order corrections have to be applied