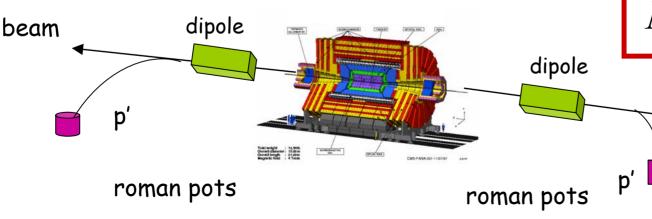
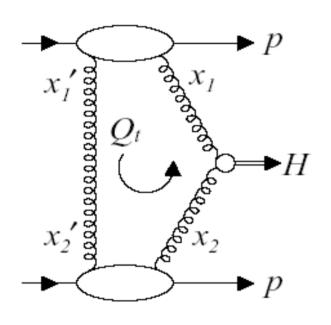

Diffractive Higgs Production


A. De Roeck/CERN

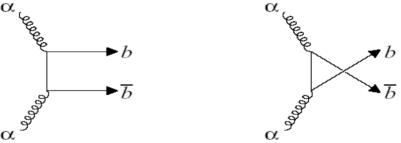
Les Houches meeting May/June 03

Diffractive Higgs Production

Exclusive diffractive Higgs production pp \rightarrow p H p : 3-10 fb Inclusive diffractive Higgs production pp \rightarrow p+X+H+Y+p: 50-200 fb



 $M_H^2 = (p + \overline{p} - p' - \overline{p}')^2$


~New: Under study by many groups

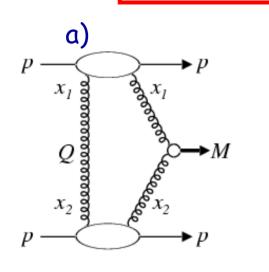
Albert De Roeck (CERN)

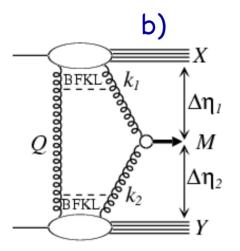
Interest in Diffraction

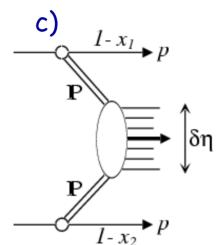
- ullet For light Higgs, dominant decay mode is $\,H o bb\,$
- \bullet For inclusive production, the QCD $\,bb\,$ background is overwhelming
- For double diffractive production (2 tagged protons) there is a $J_7 = 0$, parity even selection rule :

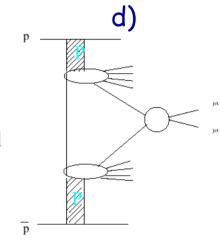
e.g. V. Khoze

cancel each other in the $m_b
ightarrow 0$ limi


• Cross section suppressed as m_b^2/E_T^2 where $E_T \sim M_H/2$


Problem: diffractive production = mixture of perturb.+non-peturb. QCD


Studied Processes


Exclusive processes

Inclusive processes

a) and b) proton induced

- c) and d) pomeron induced
- c) "factorizable" pomeron model: $\varepsilon = 0.2$ (flux factor $d\sigma(s') \sim (s')^{2\varepsilon}$)
- d) "non-factorizable" pomeron model: $\varepsilon = 0.08$

(R. Peschanski)

e) SCI/GAL proton models

Khoze et al
$$\rightarrow$$
 a),b),c)
Cox et al \rightarrow c)

Boonekamp et al
$$\rightarrow$$
 d)
Enberg at al \rightarrow e) Godizov et al \rightarrow a)

Godizov et al
$$\rightarrow$$
 a)

Cross Section Calculations

• Fold either pomeron structure functions (as measured at HERA) or proton structure functions with the cross section $gg \to H$

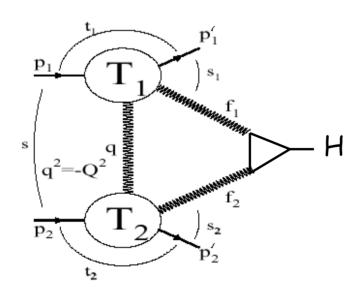
$$\sigma_H \approx \frac{G_F \alpha_s^2}{288\pi\sqrt{2}} \tau \int_{\tau}^{1} \frac{dx}{x} g_1(x, m_h^2) g_2(\tau/x, m_h^2)$$

$$g_i(x, Q^2) = \int_x^{\xi_{max}} d\xi_i f_{\mathbb{P}/i}(\xi_i) g_{\mathbb{P}}(x/\xi_i, Q^2).$$

Important unknowns

- ullet Energy dependence Pomeron flux factor $f_{I\!\!P/i}(\xi_i)$
- Normalization to di-jets (colour factor)
- Gap survival probability (SP) (factorization breaking)


 Normaliza et Toyetron (di jet deta)


Normalize at Tevatron (di-jet data)

Calculate (Khoze et al.: soft rescattering/QCD radiation in the gap) Some group do not take such SP into acount \Rightarrow High cross sections!

Reliability of the cross section calculations?

Recent Calculations

Cox, Forshaw, Heinemann (2001)

- Factorized Pomeron induced model
- gluon from $H1/\epsilon = 0.20$ (flux)

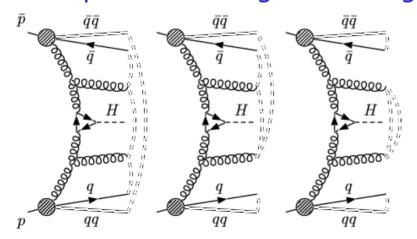
Boonekamp, Peschanski, Royon, ADR (2002)

- Non-Factorized Pomeron induced model
- gluon from H1/ ε = 0.08 (flux)

Khoze, Martin, Orava, Ryskin, ADR (2002)

•Exclusive channel with uncertainties, acceptance and full background estimates

Godizov, Petrov, Prokudin, Ryutin (2003)

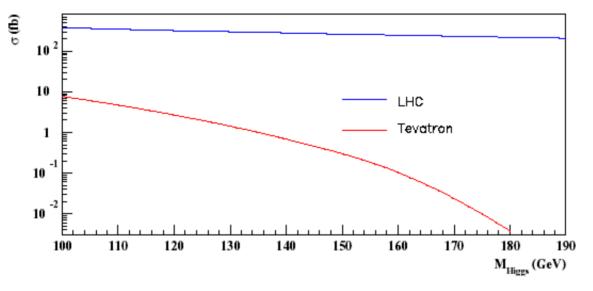

- Exclusive, proton induced
- Regge Eikonal approach, used to describe HERA data. Uses fully non-factorized form of the amplitude
- No rapidity gap suppression

Recent Calculations

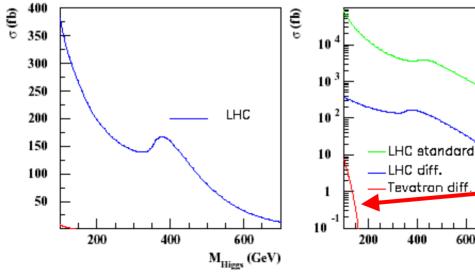
Enberg, Ingelman, Kissavos, Timneanu (2002)

- Soft color interaction model
- Generalized area law model Claimed to describe Tevatron and HERA data

No explicit color singlet exchange



_							
	Teva	atron	LHC				
$m_H = 115 \mathrm{GeV}$	$\sqrt{s} = 1$.96 TeV	$\sqrt{s} = 1$	14 TeV			
	$\mathcal{L} = 2$	0 fb^{-1}	$\mathcal{L} = 3$	$0 \; {\rm fb}^{-1}$			
σ [fb] Higgs-total	60	00	27000				
	SCI	GAL	SCI	GAL			
Higgs in single diff	raction:						
σ [fb] leading-p	1.2	1.2	190	160			
σ [fb] gap	2.4	3.6	27	27			
R [%] leading-p	0.2	0.2	0.7	0.6			
R[%] gap	0.4	0.6	0.1	0.1			
# H + leading-p	24	24	5700	4800			
\hookrightarrow # H $\rightarrow \gamma \gamma$	0.024	0.024	6	5			
Higgs in DPE:							
σ [fb] leading-p's	$1.2 \cdot 10^{-4}$	$2.4\cdot 10^{-4}$	0.19	0.16			
σ [fb] gaps	$2.4\cdot10^{-3}$	$7.2\cdot 10^{-3}$	$2.7\cdot 10^{-4}$	$5.4\cdot10^{-3}$			
R [%] leading-p's	0.01	0.02	0.1	0.1			
$R [\%] \mathrm{gaps}$	0.1	0.2	0.001	0.02			
# H + leading-p's	0.0024	0.0048	6	5			


No exclusive events produced in this model

Inclusive Production Cross sections

Boonekamp et al.

Inclusive Higgs production

Rather hopeless at the Tevatron

800

 M_{Higgs} (GeV)

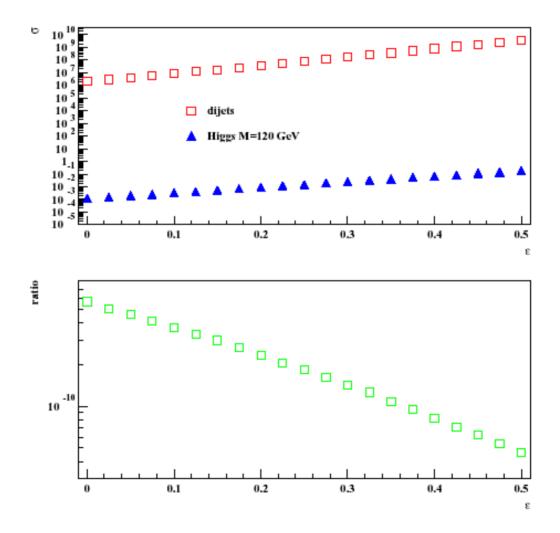
600

1000

Inclusive cross sections (fb) for LHC

M_{Higgs}	(1)	(2)	(3)	(4)
100	182.3	152.1	12.4	1.5
120	158.5	114.3	9 .6	18.1
140	137.7	54.3	4.6	61.6
160	122.5	6.2	0.5	109.0
180	108.9	0.8	0.1	101.4
200	98.1	0.3	0.0	72.5

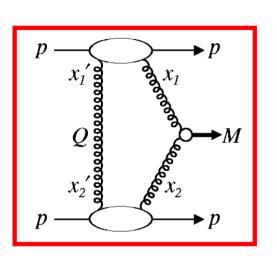
- (1): generator level
- (2): $b\overline{b}$ channel
- (3): $\tau\tau$ channel
- (4): W^+W^- channel


- 1. Boonekamp et al.(*)
- 2. Cox et al. (*) 5-20 fb (120GeV)
- 3. Khoze et al. 40 fb (120 GeV)

Difference in predictions about a factor 10-20.

Difference essentially due to the flux factor (and gap suppression) Model assumptions can be tested with (Run-II) Tevatron data.

(*) both normalized to the CDF Diffractive di-jet data


E.g. effect of the choice of ε

Exclusive Higgs production for LHC

Pre- DISO2 status

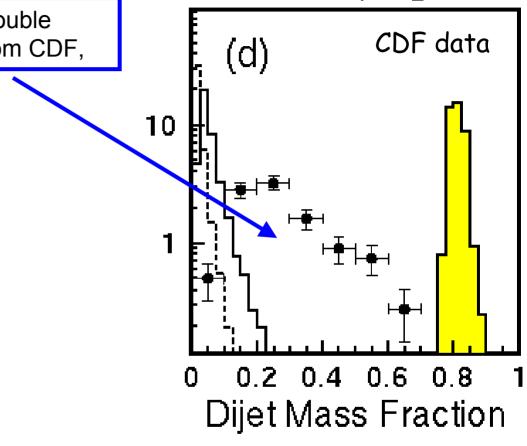
A. Sobol

Year	Authors	M_H , GeV	σ_H , fb
1991	Bialas Landshoff	[100,400]	100 ÷ 200
1994	Cudell Hernandez	[100,400]	200 ÷ 400
2000	Khoze Martin Ryskin	120	≈2
2000	Kharzeev Levin	100	$10 \div 270$
2001	Petrov Ryutin Godizov	[100,400]	80 ÷ 140

A. Bialas: cross sections easily uncertain by a factor 10 or more V. Khoze et al numbers are low mostly due to gap survival probability

Are high cross sections possible?

Test for Exclusive Production


There is a published measurement of double diffractive dijet production from Run I from CDF,

CDF di-jets in DPE Upper limit 3.7 nb

Generally predictions of >O(100) pb for the Higgs Overshoot this predictions By a factor 10-100

Hence \rightarrow ruled out!

CDF and DO should find & measure a signal with run IIa

Smooth decrease of the cross section. Can exclusive processes be seen on top of the non-exclusive background?

Comparison of models

V. Khoze et al., hep-ph/0207313

Reference	Process	Survival factor Norm. σ_{Higgs} (fb)		(fb)	Notes		
Reference	TTOCCAA	T^2	S^2	Norm.	Teva.	LHC	110003
Cudell,	excl	no	no	$\sigma_{ m tot}$	30	300	Overshoots CDF dijets
Hernandez [21]	incl				200	1200	by 100 0.
Levin [20]	excl	yes	yes	$\sigma_{ m tot}$	20		Overshoots CDF dijets
Levili [20]	incl	No DL			70		by 300.
Khoze, Martin,	excl			pdf	0.2	3	Uses skewed gluons.
, , ,	incl	yes	yes	pdf	1	40	
Ryskin [16]	C.inel				~ 0.03	50	CDF dijets OK.
Cox, Forshaw,	C.inel	$T \simeq 1$		CDF	0.02	6	No LO, only NLO, QCD
Heinemann [5]	C.inei		norm	dijet	0.02	0	i.e., no Fig.2(a), only 2(c).
Boonekamp,							
De Roeck,	C.inel	$T \simeq 1$		CDF	1.9	180	No LO, only NLO, QCD.
Peschanski,	Ciller	1 = 1	norm	dijet	1.9	100	Assume $S_{CDF}^2 = S_{LHC}^2$.
Royon [7]							
Enberg,							
Ingelman,	incl			$F_2^{\text{Diff.}}$	_ 0.01	0.0	Nh
Kissavos,	C.inel	yes	yes	r ₂	< 0.01	0.2	No coherence.
Timneanu [19]							

II.	number of events		G/P	significance
Higgs signal	signal	background	S/B	$S/\sqrt{S+B}$
CMS a) $H \rightarrow \gamma \gamma$	313	5007	$0.06 \left(\frac{1 \text{ GeV}}{\Delta M_{\gamma\gamma}} \right)$	4.3σ
ATLAS	385	11820	$0.03 \left(\frac{2 \text{ GeV}}{\Delta M_{\gamma\gamma}} \right)$	3.5σ
b) $tar t H igsquare bar bar b$	26	31	$0.8 \left(\frac{10 \text{ GeV}}{\Delta M_{bb}} \right)$	3σ
c) $gg^{PP} ightarrow p + H + p ightharpoonup bar{b}$	11	4	$3\left(\frac{1\mathrm{GeV}}{\Delta M_{\mathrm{missing}}}\right)$	3σ
d) $gg^{PP} \to X + H + Y$ $\downarrow \to b\bar{b}$	190	21,000	$0.009 \left(\frac{10 \mathrm{GeV}}{\Delta M_{b\bar{b}}} \right)$	1.3σ
e) Weak Boson Fusion (WBF)				
$qWWq ightarrow jHj ightarrow j\gamma\gamma j$	17	9	CMS	3.3σ
	18	17	ATLAS	3σ
ightarrow j au au j	25	8		4.4σ
$ ightarrow j W(l u) W^*(l u) j$	49	31		5.4σ
f) WBF with rapidity gaps	jet	E_T cuts:		
$qWWq ightarrow j + H(ext{high}q_t) + j \ igsqcup_{oldsymbol{b}} bar{b}$	250		$0.14 \left(\frac{10 \text{ GeV}}{\Delta M_{bb}} \right)$	5.5σ
	400	3700	$0.11 \left(\frac{10 \text{ GeV}}{\Delta M_{bb}} \right)$	6.2σ
g) $gg o ZZ^* o 4l$	6 3	4 1.5	CMS ATLAS	1.9σ 1.4σ
h) $gg o WW^* o l u l ar{ u}$	44	272	CMS	2.5σ
i) $WH ightarrow l u b ar{b}$	161	7095	0.02	1.9σ

LHC 30 fb⁻¹ for 120 GeV Higgs

Khoze, Martin, Orava, Ryskin and ADR, Eur.Phys.J. C25 (2002) 391-403

Numbers for 30 fb⁻¹ and a Higgs of 120 GeV

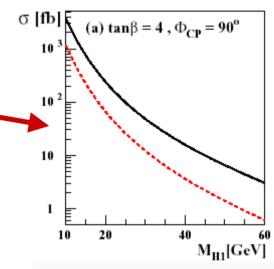
A light Higgs will be a challenge for the LHC!

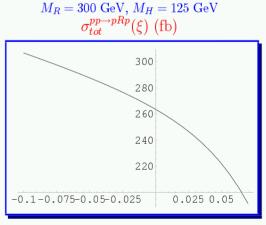
Beyond Standard Model

Diffractive production of new heavy states pp \rightarrow p + M + p Particularly if produced in gluon gluon (or $\gamma\gamma$) fusion processes

Examples:

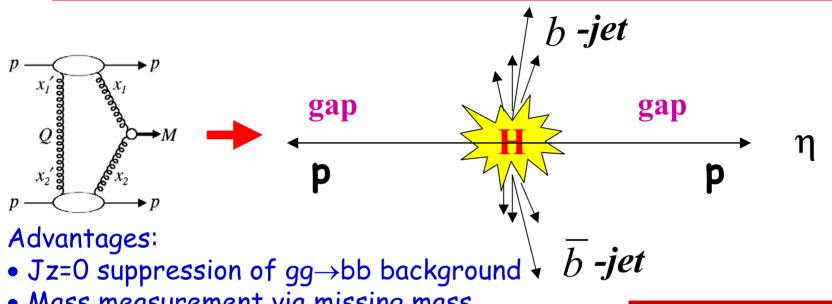
Light CP violating Higgs Boson $M_H < 70 \text{ GeV}$ B. Cox et al.

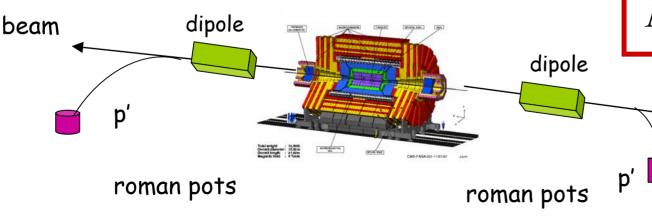

Light MSSM Higgs h \rightarrow bb at large tan β Light H,A (M<150 GeV) in MSSM with large tan β (~ 30) \rightarrow S/B > 10 Medium H,A (M=150-200 GeV) medium tan β ? V. Khoze et al.


Radion production - couples strongly to gluons
Ryutin, Petrov

Exclusive gluino-gluino production?

Only possible if gluino is light (< 200-250 GeV)


V. Khoze et al.

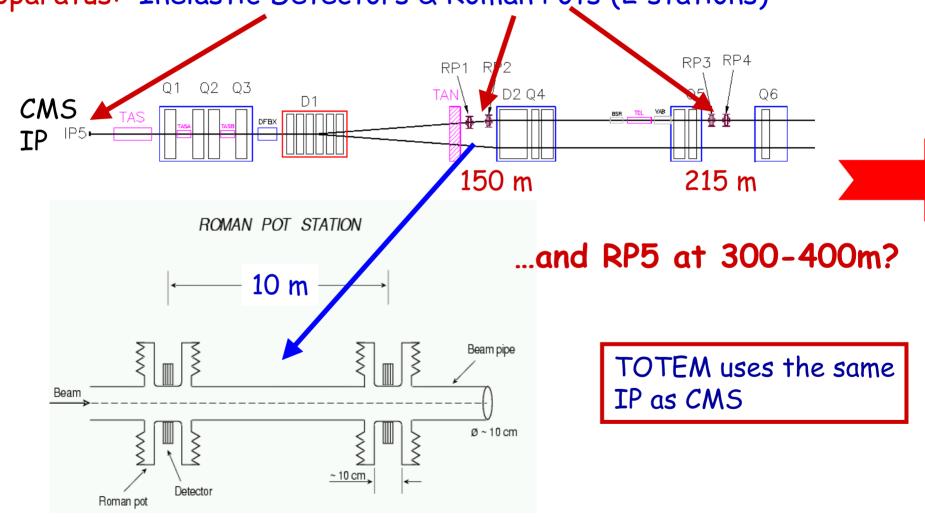


Diffractive Higgs Production

Exclusive diffractive Higgs production $pp \rightarrow p H p$: 3-10 fb Inclusive diffractive Higgs production pp \rightarrow p+X+H+Y+p: 50-200 fb

Mass measurement via missing mass

~New: Under study by many groups

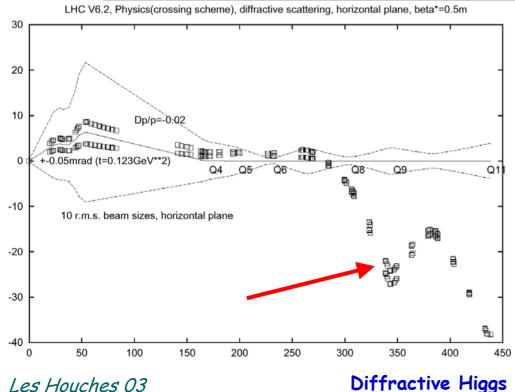

 $M_H^2 = (p + \overline{p} - p' - \overline{p}')^2$

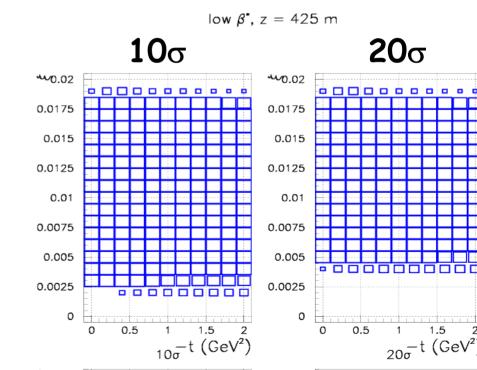
Albert De Roeck (CERN)

Diffractive Higgs

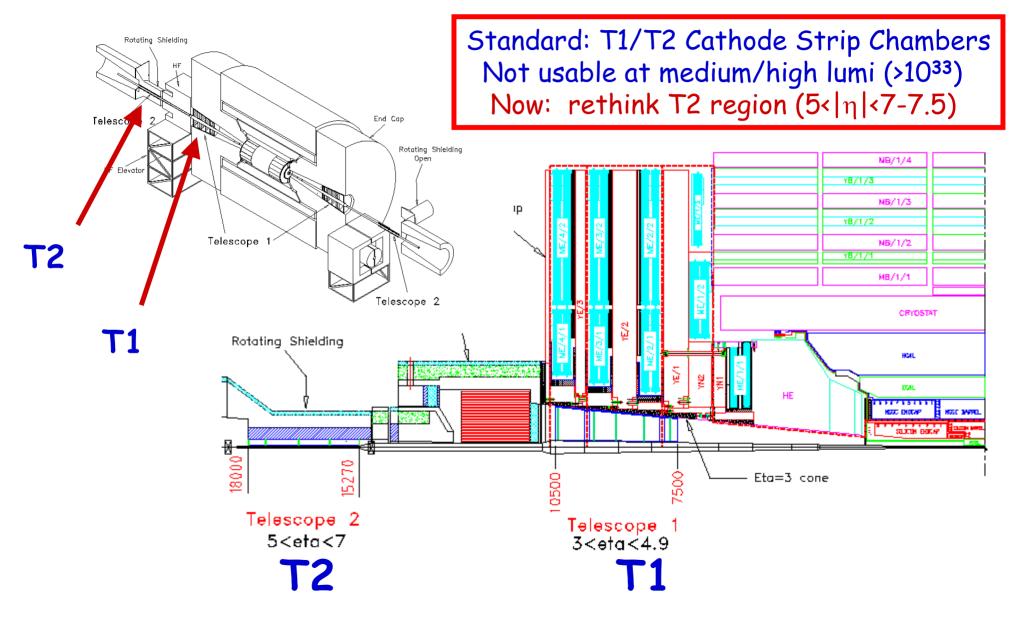
The TOTEM Experiment

TOTEM physics program: total pp cross section, elastic cross section Apparatus: Inelastic Detectors & Roman Pots (2 stations)




Roman pot acceptances

	pot _{opt.}	ξ - range	t - range	L(cm ⁻² sec ⁻¹)
$\beta^* = 0.5 \text{ m}$	4 + 5	0.003 - 0.15	> 5 GeV ²	10 ³² - 10 ³³
				4 021
= 18 m	3	0.03 – 0.15	> 0.3 GeV ²	10^{31}
= 1100 m	1 + 2	0.02 - 0.15	> 5 · 10 ⁻³ GeV ²	10^{28}


MAD calculations acceptance $0.003(2) < \xi < 0.15$

For Higgs need acceptance $\xi \sim 0.01$

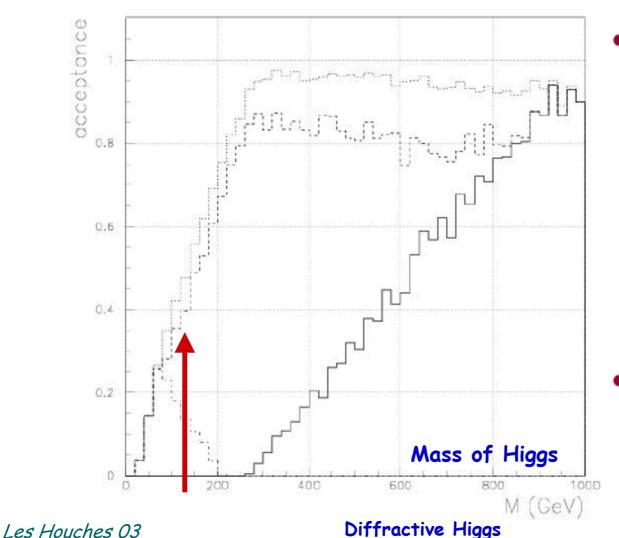
TOTEM inelastic detectors

Status of the CMS/TOTEM study

- Common working group to study diffraction and forward physics at full LHC luminosity approved by CMS and TOTEM (ADR/ K. Eggert organizing)
 Use synergy for e.g. simulation, physics studies & forward detector option studies. Report back with EOI spring 2004
- Detector options being explored
 - Roman Pot/microstations for beampipe detectors at 150, 215, add 310 & 420 m
 - Inelastic detectors

T1 and T2 CSC trackers of TOTEM

Replace T2 with a compact silicon tracker (~ CMS technology)

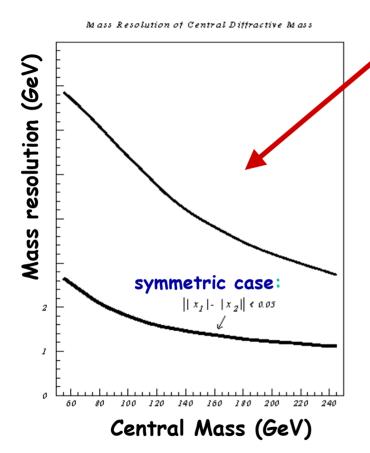

Add EM/HAD calorimeter (CASTOR) behind T2

Add Zero degree calorimeter (ZDC) at 140 m

- Common DAQ/Trigger for CMS & TOTEM
- Common simulation etc...

SM Higgs Studies: Exclusive Production

Needs Roman Pots at new positions 320 and/or 420 m Technical challenge: "cold" region of the machine, Trigger signals...



- Combined acceptance of
 - → All detectors
 - O Dotted line
 - \rightarrow 420 m + 215 m
 - Dashed line
 - → 215 m alone
 - Solid line
 - → 420 m alone
 - Dash-dotted line
- without 308 / 338 m location
 - → 10-15 % loss in acceptance

R. Orava et al.

Albert De Roeck (CERN)

Diffractive Higgs Production

Mass resolution vs. central mass from protons measured in roman pots assuming $\Delta x_F/x_F = 10^{-4}$

Exclusive channel $pp \rightarrow p$ H p advantages Good mass resolution thanks to missing mass method:

 $\Delta M = O(1.0 - 2.0) GeV$ (including systematics)

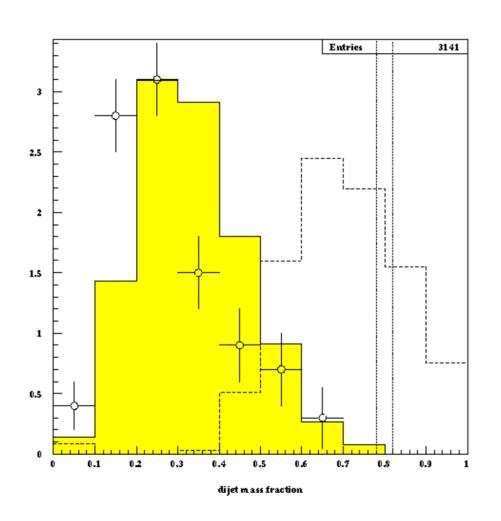
Study possible in the b-quark decay mode b-quark background suppression: $(J_z = 0 \text{ states})!!$ \Rightarrow Switch of dominant background (at LO)!

Discussion: Diffractive Higgs production

Range of predictions by different models: different approaches \Rightarrow Differences are expected.

How can we distinguish these approaches. Use Tevatron data.. Understanding gap survival probabilities? Extrapolation to LHC?

- Exclusive predictions
 - CDF dijets are a serious constraint. Excludes large Higgs cross section predictions. What is the range of predictions that is left? Only Khoze et al. I.e. 3 fb⁻¹?
 - Criticism: do pure exclusive high mass processes at such high energies exist? --aren't there always soft gluons around?


Can we demonstrate this at the Tevatron?

- High mass di-jets (but can one be sure about pure exclusiveness?)
- Two photon production (too small a cross section? Trigger?)
- low mass systems, (χ_c, χ_b) ...
- Uncertainty on the cross sections (Khoze et al: Factor 2). How to reduce that with measurements?

Discussion: Diffractive Higgs production

- Inclusive predictions
 - -What can we believe? Pomeron intercept (hard/soft)?
 - -What are the uncertainties on the individual calculations?
 - -What do we gain in inclusive diffraction?
 - No spin selection rule
 - Better (sufficient) S/B? Use of remnants to improve M_H resolution?
 - -Test the models with present or upcoming Tevatron/HERA to reduce the uncertainty (e.g. measure ϵ)
 - -Diffractive dijet cross sections. Dijet mass fraction. VM at HERA?
 - -2-photon production
 - -Do all models give the good description of the di-jets?

CDF diffractive dijets

Boonekamp et al.

Use same formalism to describe the diffractive di-jets

Shape well described (normalization factor 3.8 off)

Summary

- · Higgs at the Tevatron: chances look rather dim
- Exclusive Higgs production at the LHC: small if gap survival probability is taken into account. Large Higgs cross sections lead to large dijet rates which can be tested/excluded by upcoming Tevatron data. Theoretical uncertainties?
- Inclusive Higgs production: larger cross sections but less clean signal and no J=0 suppression of the background.
 - What do we gain in inclusive diffraction? Better M_H resolution in bb? Use of pomeron remnants? Other channels (e.g. τ decays?)
- Others channels: light MSSM Higgs, Radions... (theory)
- Monte Carlo generators exist for all models
- Experimental issues/studies in progress
 - Roman pot acceptances/trigger question
 - Forward tagging $|\eta| \sim 5-7$ (remant tagging)