User Tools

Site Tools


2015:groups:sm:qg

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Next revision Both sides next revision
2015:groups:sm:qg [2015/06/03 15:11]
jesse.thaler created
2015:groups:sm:qg [2015/06/06 08:36]
simon.pltzer [Quark/Gluon Enrichment Studies]
Line 1: Line 1:
 +====== Quark/Gluon Enrichment Studies ======
  
 +a.k.a. Hunting the White Whale of Jet Substructure
  
 +  * Andy Buckley
 +  * Jon Butterworth
 +  * Mario Campanelli
 +  * Marat Freytsis
 +  * Peter Loch <​loch@physics.arizona.edu>​
 +  * Deepak Kar
 +  * Simon Plätzer
 +  * Andrzej Siodmok <​andrzej@cern.ch>​
 +  * Peter Skands <​peter.skands@monash.edu>​
 +  * Dave Soper
 +  * Gregory Soyez
 +  * Frank Tackmann
 +  * Jesse Thaler <​jthaler@mit.edu>​
 +  * ...
  
-====== ​Original Notes from Gregory ​======+Link to GitHub repository: ​ https://​github.com/​gsoyez/​lh2015-qg 
 +===== Preliminaries ​===== 
 + 
 +==== Quark/gluon discrimination well-defined?​ ==== 
 + 
 +  * Of course, at the hadron level, you can't define a quark jet vs. a gluon jet unambiguously. 
 +  * That said, one can talk about quark/gluon enriched samples, where restrictions are placed on the final state to preferentially select quark- or gluon-initiated jets (e.g. gluon enrichment in dijets, quark enrichment in vector boson plus jet). 
 +  * In fixed-order QCD, there is an ambiguity ​from soft gluon splitting to wide-angle quark/​anti-quark. ​ However, in the eikonal limit, there is no ambiguity (up to power corrections),​ so quark/gluon calculations can be done at the parton level in the eikonal limit (relevant for resummed calculations). 
 +  * If needed, we can use flavored jet algorithms to give an IRC safe definition of jet flavor at the parton level. 
 + 
 +==== How to isolate quark vs. gluon samples? ==== 
 + 
 +  * Ultimately, we need an operational definition of quark- and gluon-enriched samples (e.g. event type, rapidity correlations,​ event shapes). 
 +  * This will allow us to separate the **measurement** of jet properties from the **interpretation** of those properties in the context of discrimination/​enrichment studies. 
 +  * One has to be aware of process dependence, since a quark in one context may not look like a quark in another context (color correlations). ​  
 +  * Ultimately, need MC studies to compare to behavior in data. 
 + 
 +==== "​Discrimination"​ really the right word? ==== 
 + 
 +  * Probably better to talk about "​quark/​gluon enrichment"​. 
 +  * For physics applications,​ we want to achieve S/sqrt{B} improvement,​ which isn't really the same as quark/gluon discrimination. 
 +  * Similar issues arise in how to define a "​hadronic W". 
 +  * Quark/gluon enrichment should be a piece of a more refined analysis. 
 +  * We can provide general recipes, but should not aim for optimal analyses, which are only sensible in the context of specific physics goals. 
 + 
 +==== What is the killer app of quark/gluon enrichment? ==== 
 + 
 +  * VBF tagging 
 +  * Rejecting (stochastic) pileup jets (important for VBF) 
 +  * SUSY multi-jet tends to be quark-enriched 
 +  * Enhancing W/Z/t/H in moderately boosted regime (where we can quark-tag the subjets. 
 + 
 +===== Physics Issues ===== 
 + 
 +==== Separating final state from initial state effects ==== 
 + 
 +  * Different jet shapes probe different phase space regions. ​ For example, jet mass is more sensitive to wide angle physics while multiplicity is more sensitive to collinear physics. 
 +  * Differences between MC programs appear in multiplicity-like observables,​ so most likely a final state effect. 
 +  * We can probe different physics by looking at hard core (collinear, FSR, beta -> 0) vs. wide angle (soft, ISR, beta -> infty). 
 + 
 +==== FSR effects ==== 
 + 
 +  * FSR effects should be dominant at small angles, yielding universal properties. 
 +  * Tuning of gluon final state shower can affect jet shapes. 
 +  * Examples: ​ g -> q qbar vs. g -> gg, including spin-polarization information 
 +  * Do beyond-LL effects help or hurt quark/gluon enrichment?​ 
 +  * What about the impact of heavy flavor? 
 + 
 +==== ISR effects ==== 
 + 
 +  * ISR effects should dominate at large angles 
 +  * Highly process dependent, depends on color corrections of jet with ISR 
 +  * We will attempt to deemphasize these in our study, if possible 
 + 
 +==== Experimental Results ==== 
 + 
 +  * ATLAS paper suggests that beta -> 0 (i.e. hard core) is not as effective as NLL calculations suggest. ​ (see http://​arxiv.org/​abs/​1405.6583 Appendix A.) 
 +  * CMS finds ptD (an example of a beta -> 0 observable) is quite effective. 
 +  * ATLAS sees considerable process dependence, whereas CMS has not emphasized this issue. ​ Is this connected to ISR in some way? 
 + 
 +  * ATLAS A14 tune already uses jet shapes, and finds that alpha_s has to be tuned downward in Pythia 8.  This, however, has a detrimental effect on LEP measurements,​ so one has to be cautious about this. 
 +  * Is there a tuning flat direction?​ 
 + 
 + 
 +==== Hemisphere quark/gluon definitions in e+e- ==== 
 + 
 +  * Consider the case of e+ e- -> q qbar.  Partition event into (thrust) hemisphere, define hemisphere flavor by summing over flavors of hemisphere constituents. 
 +  * At LO, we can unambiguously define hemisphere flavors. 
 +  * At NLO, we can also unambiguously define flavor via hemisphere, though there is now a small gluon fraction from gluon recoiling against q qbar pair. 
 +  * At NNLO, things are more complicated. 
 +    * Can have soft gluon splitting into q-qbar in different hemispheres,​ creates IRC safety issue. 
 +    * One can use a flavored algorithm (BSZ) to define the flavour of two flavor-kt jets 
 +  * Ultimately, want to give an operational definition of flavor based on the Born-level operator contributing to the process. 
 +    * Claim: ​ all subtleties are formally power suppressed. 
 +    * Use case, VBF, two jets with a third jet veto, q/g well-defined in the exclusive limit. 
 + 
 +==== Flavored Jet Algorithms ==== 
 + 
 +  * This is a topic worthy of its own Les Houches study. 
 +  * For pp collisions, multiple possible uses of flavored jet algorithms. 
 +  * One can just run flavor-kT 
 +  * Or one can run flavor-kT to define flavor ghosts, and run standard anti-kT. 
 +  * Or one can run flavor-kT for deflavoring constituents,​ and then run standard anti-kT. 
 + 
 +===== Ultimate Goal for Les Houches Study ===== 
 + 
 +  * Recommendation to ATLAS and CMS for observables that should be measured which carry quark/gluon information. 
 +  * These observables must be defined on the final state alone (i.e. fiducial cross section). 
 +  * These observables should help enrich quarks over gluons (or vice versa). 
 +  * Eventually, these observables should be useful for MC tuning, with controllable systematics. 
 +  * Make recommendation about robustness vs. performance. ​ We will likely emphasize robustness, since performance depends strongly on process dependence, pileup. 
 +  * Question: ​ How should we discuss low pT vs. high pT 
 + 
 +===== Initial Les Houches Study ===== 
 + 
 +==== Key Question ==== 
 + 
 +  * Do we understand FSR modeling by workhorse parton showers? 
 +  * Start with the clean case of e+e-, move to pp later. 
 + 
 +==== Basic Plan === 
 + 
 +  * Take e+e- -> q qbar, and e+e- -> g g 
 +  * Vary collision energy, jet radius 
 +  * Choose a core set of jet shapes 
 +  * Use as many MC options as possible. 
 +  * Question: use ROC curves or mutual information (I(T;A)) to quantify discrimination power? 
 +    * Answer: doesn'​t really matter, probably I(T;A) is easier to begin with. 
 +    * Better answer: ​ Use separation (S-B)^2 / (2 (S + B)). 
 + 
 +==== Core Jet Shapes ==== 
 + 
 +  * Generalized angularities (kappa, beta) 
 +    * (1,0.5) 
 +    * (1, 1) -- jet width 
 +    * (1,2)  -- jet mass 
 +    * (0,0) -- multiplicity 
 +    * (2,0) -- ptD 
 +  * Question: ​ Apply on full events or just tracks 
 +    * Answer: ​ Apply on full events. 
 +  * Question: ​ Choice of axes? (issue of recoil) 
 +    * Answer: ​ WTA recombination axes from anti-kT 
 +  * Question: ​ Sum over particles (angularity-style) vs. sum over pairs (ECF-style) 
 +    * Answer: ​ Sum over particles (angularity-style) 
 +  * Question: ​ Plot linear or log scale? 
 +    * Answer: ​ Do both if it makes sense, better for angularities to have log scale. 
 + 
 +==== Supplemental Jet Shapes ==== 
 + 
 +  * More generalized angularities (kappa, beta) 
 +    * (0.5,0.5) 
 +    * (0.5,1.5) -- should give bad performance 
 +    * limit (1+epsilon,​0) / epsilon -- should give good perfomance 
 +  * Ellipticity/​eccentricity 
 +  * Covariance matrix observables 
 +  * Pull 
 +  * Psi(r) -- the jet shape 
 +  * Check Gallicchio and Schwarz catalog 
 +  * tau21, or ECF(2,3) 
 +  * Generalized angularities with soft-drop jets, varying beta_SD 
 +  * Do sum over pairs version of angularities (i.e. ECF-style) 
 + 
 +==== Analysis Workflow ==== 
 + 
 +  * Rivet analysis in place which computes from a HepMC event sample the various generalised angularity distributions. 
 +  * Processes to consider: 
 +    * mu+mu- -> spin1 -> q qbar  take photons 
 +    * mu+mu- -> spin0 -> g g  take Higgs 
 +    * for tests of universality: ​ mu+mu- -> spin0 -> q qbar 
 +  * Energies 
 +    * Q=sqrt{s} = 50, 200, 800 GeV 
 +    * Optionally: ​ Q = 100, 400 GeV 
 +  * Jet definition:​ 
 +    * ee-antikt [genkt, p=-1], WTA_modp recomb scheme 
 +    * R = 0.3, 0.6, 0.9 
 +  * Add thrust from thrust hemispheres for anticipated analytic comparisons 
 +  * Add multiplicity (event-wide) in bins of thrust: 
 +     * T < 5 GeV/​sqrt(S) 
 +     * 5 GeV/sqrt(S) < T < 0.1 
 +     * 0.1 < T < 0.2 
 +     * 0.2 < T 
 + 
 +==== Preliminary plots for meeting on Thursday ==== 
 + 
 +{{:​2015:​groups:​sm:​ga_10_20.pdf|}} 
 +{{:​2015:​groups:​sm:​ga_10_10.pdf|}} 
 +{{:​2015:​groups:​sm:​ga_10_05.pdf|}} 
 +{{:​2015:​groups:​sm:​ga_00_00.pdf|}} 
 +{{:​2015:​groups:​sm:​ga_20_00.pdf|}} 
 + 
 +==== Questions ==== 
 + 
 +  * Is discrimination power (e.g. for width) coming from the hadronization regime? 
 +    * Possibility: ​ Isolate hadronization regime (thrust ~ LambdaQCD/​Q) and shower regime (thrust ~ 0.1-0.2) and optionally hard jet regime (thrust >~ 0.25). ​ Study scaling of, e.g., multiplicity as a function of Q in each of these regimes. 
 +  * By testing pythia vs. herwig, can we test string vs. cluster hadronization?​ 
 +  * Is there jet radius dependence?​ 
 +  * Does matching help in controlling quark/gluon uncertainties?​ 
 +  * Universality/​process dependence of conclusions?​ 
 +    * Related to whether the discrimination power comes from the core or the periphery of jet. 
 + 
 +===== Next Les Houches Study (for after LH) ===== 
 + 
 +  * Above study at hadron colliders, using dijets, W/Z/gamma + j, and maybe t tbar samples 
 + 
 +===== Analytic Les Houches Study? ===== 
 + 
 +  * Analytic predictions known/​available/​straightforward for: 
 +    * Quark thrust: N^3LL' + N^3L0 
 +    * Gluon thrust: N^2LL' + N^2L0 
 +    * ang (kappa =1):  NLL' 
 +  * Can we do useful quark/gluon study from analytic results? 
 + 
 +===== Notes from Tuesday Meeting ​=====
  
 <​code>​ <​code>​
Line 134: Line 342:
  
 </​code>​ </​code>​
 +
 +===== Notes from Thursday Meeting =====
 +
 +<​code>​
 +
 +
 +Meeting in Les-Houches
 +
 +
 +Presentation of the wiki notes: list of contributors,​ ...
 +
 +Presentation of the status of the software: ​
 +  start w e+e- and do pp later
 +  Rivet analysis in place which computes from a HepMC event sample the various generalised angularity distributions
 +
 +Reminder: what we mean by a q and a g is e+e-\to qq and e+e-\to gg
 +  If we want to do something more refined:
 +    - at LO we can unambiguously sum flavours in hemispheres defined by thrust
 +    - at NLO we can unambiguously sum flavours in hemispheres defined by thrust
 +      we get a quark and a small gluon fraction
 +    - at NNLO things are more complicated. We can use a flavoured
 +      algorithm (BSZ) to define the flavour of each hemisphere
 +    - for pp collisions, we should use a flavoured algorithm to
 +      determine flavour, and then find a way (e.g. using ghosts) to
 +      run anti-kt jets. This would deserve a topic per se (a LH accord)?
 +   
 +    - Question: can we match to the Born and find an operatiroal
 +      definition up t power corrections?​
 +      Use case: VBF, two jets with a third jet veto. q/g well-defined
 +                in the exclusive limit
 +
 +Questions to look into:
 + - is the discrimination power (e.g. for width) coming from the hadronisation regime?
 + - plotting in log binninb?
 + - pythia v. herwig important to test string v. cluster hadronisation
 + - isolate hadronisation regime. Study the scaling in different bins
 +   of one angularity (e.g. thrust). Take a hadronisation region
 +   ​(T\propto LQCD/Q) and a shower region (T~0.1-0.2) plus optionally a
 +   "​hard jet region"​ (T >~ 0.25)
 + - does mathing help?
 + - jet radius dependence (edit analysis and recompile)
 + - analytic predictions?​
 +    for thrust: ee->qq known at N^3LL' + N^3LO
 +                ee->qq known at N^2LL' + N^2LO
 +        ang(bkappa=1):​ NLL'
 + - question of the universality/​process dependence of the conclusions?​
 +   ​Related to whether the power comes from the core or the periphery?
 +
 + - process to consider: ​
 +     ​mu+mu- -> spin1 -> qq  take photons
 +     ​mu+mu- -> spin0 -> gg  take Higgs
 +   for tests of universality
 +     ​mu+mu- -> spin0 -> qq
 +
 + - Energies Q=sqrt = 50, 200, 800 GeV
 +   ​jetdef:​ ee-antikt [genkt, p=-1], WTA_modp recomb scheme
 +   ​radii:​ 0.3, 0.6, 0.9
 +
 + - add thrust from thrust hemispheres for analytic purpose
 +
 + - add multiplicity (event-wide) in bins of thrust:
 +     T < 5 GeV/sqrt(S)
 +     5 GeV/sqrt(S) < T < 0.1
 +     0.1 < T < 0.2
 +     0.2 < T
 +     
 +
 +</​code>​
 +
 +===== Notes for Jesse for Preparing Summary Talk =====
 +
 +  * Quark is more of an adjective than a noun.
 +  * Pseudo-quark? ​ (That language doesn'​t go over very well.)
 +
 +==== What is a Quark Jet? ====
 +
 +(From ill-defined to well-defined)
 +
 +  * A quark parton
 +  * A Born-level quark parton
 +  * The initiating quark parton in a final state shower
 +  * An eikonal line with baryon number 1/3 and carrying triplet color charge
 +  * A quark operator that appears in a hard matrix element in the context of a factorization theorem.
 +  * A parton-level jet object that has been tagged as a quark using a soft-safe flavored jet algorithm (automatically collinear safe if you sum constituent flavors).
 +  * A phase space region (as defined by an unambiguous hadronic fiducial cross section measurement) that yields an enriched sample of quarks (as interpreted by some suitable, though fundamentally ambiguous, criterion).  ​
 +  ​
 +(Sometimes people think we care about the top of the list while we are really focused entirely on the bottom.)
2015/groups/sm/qg.txt · Last modified: 2015/07/14 08:27 by philippe.gras