User Tools

Site Tools


2017:groups:higgs:lsp

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
2017:groups:higgs:lsp [2017/06/18 02:59]
grgory.moreau
2017:groups:higgs:lsp [2017/10/01 11:20] (current)
jonathan.butterworth
Line 1: Line 1:
-__Interested people:__ //Jose Miguel No, Jose Zurita, Stefania Gori, Ken Mimasu, Linda Finco, Sijing Zhang, Susan Gascon-Shotkin,​ Grégory Moreau, Sylvain Fichet, Thomas Flacke, Stefan Liebler//+__Interested people:__ //Jose Miguel No, Jose Zurita, Stefania Gori, Ken Mimasu, Linda Finco, Sijing Zhang, Susan Gascon-Shotkin,​ Grégory Moreau, Haiying Cai, Sylvain Fichet, Thomas Flacke, Stefan Liebler, Daniele Barducci, Andrei Angelescu, Jon Butterworth//
  
  
Line 15: Line 15:
 Looking at scalar couplings to fermions, other production and decay modes ($\phi \to \tau \tau$ or $\phi \to b \bar b$ [reconstructing the invariant scalar mass]) could be studied as well. Looking at scalar couplings to fermions, other production and decay modes ($\phi \to \tau \tau$ or $\phi \to b \bar b$ [reconstructing the invariant scalar mass]) could be studied as well.
  
-Gauge invariant (pseudo-)scalar couplings to ZZ, WW, $\gamma\gamma$,​ $\gamma$Z, gluon-gluon:​ $$\frac{\phi}{\Lambda_1}\vert D_\mu H\vert^2 \ \ (for scalars ​only) \ \ and \ \ \frac{\phi}{\Lambda_2} Tr[V_{\mu\nu} \tilde V^{\mu\nu}] \ .$$ +Gauge invariant (pseudo-)scalar couplings to ZZ, WW, $\gamma\gamma$,​ $\gamma$Z, gluon-gluon:​ $$\frac{\phi}{f_H}\vert D_\mu H\vert^2 ​   
 +\ \ \frac{\phi}{f_Z} Tr[V_{\mu\nu} V^{\mu\nu}]  
 +\ \ and \ \ \frac{\phi}{\tilde f_Z} Tr[V_{\mu\nu} \tilde V^{\mu\nu}] \ .$$ 
  
 Two other effective parameters: $\phi$ mass ($m_\phi$) and Branching for $\phi \to \gamma \gamma$ ($B_\gamma$). Two other effective parameters: $\phi$ mass ($m_\phi$) and Branching for $\phi \to \gamma \gamma$ ($B_\gamma$).
Line 28: Line 30:
 A first work Plan:  A first work Plan: 
 (1) implement the effective model into FeynRules (1) implement the effective model into FeynRules
-(2) interface the DELPHES detector response simulator (at the MadGRAPH level) +(2) produce kinematical distributions for the signal with MadGRAPH (directly from the LHE files with madAnalysis for example) 
-(3) produce kinematical distributions for the signal with MadGRAPH +(3) interface the DELPHES detector response simulator (at the MadGRAPH level) 
-(4) compare distributions for SM-like couplings ($1/\Lambda_1$) and kinetic-like couplings ($1/\Lambda_2$) [also to develop a discrimination test between e.g. a light Higgs and a radion] ​+(4) compare distributions for SM-like couplings ($1/f_H$) and kinetic-like couplings ($1/​f_Z$, ​$1/\tilde f_Z$) [also to develop a discrimination test between e.g. a light Higgs and a radion] ​
 (5) simulate SM background events as well (main physical one: Drell-Yan + double ISR/FSR ?)  (5) simulate SM background events as well (main physical one: Drell-Yan + double ISR/FSR ?) 
 (6) optimise a set of selection cuts (6) optimise a set of selection cuts
-(7) obtain a sensitivity plot (prospective for Run 2) in the 3-dimension ​parameter space: $m_\phi$, $1/\Lambda_1$, $1/\Lambda_2$ [=couplings for the considered gauge bosons] for $B_\gamma$=100% (plot to be simply rescaled accordingly to the wanted $B_\gamma$ value then). (+motivate EXP analysis of exclusion limits from Run 1 data?).+(7) obtain a sensitivity plot (prospective for Run 2) in the parameter space: $m_\phi$, $1/f_H$, $1/f_Z$, $1/\tilde f_Z$ [=couplings for the considered gauge bosons] for $B_\gamma$=100% (plot to be simply rescaled accordingly to the wanted $B_\gamma$ value then). (+motivate EXP analysis of exclusion limits from Run 1 data?).
  
 Goal: derive a generic plot that can be recast to any specific theoretical scenario with a light (pseudo-)scalar,​ and, determine its complementarity with LEP(,EWPT) bounds. Goal: derive a generic plot that can be recast to any specific theoretical scenario with a light (pseudo-)scalar,​ and, determine its complementarity with LEP(,EWPT) bounds.
  
 +Tools: Some of us are looking at this using [[2017:​groups:​tools:​contur_for_light_scalar_particles|Contur]].
  
    
-**2. Complementarity with "​single" ​phi production** [same context / strategy as in point **1.**]+**2. Complementarity with "​single" ​scalar ​production** [same context / strategy as in point **1.**]
  
   * VBF(+ISR/​FSR):​ q q → q q $\phi$ [for low $m_\phi$, possible tag on the 2 jets?​] ​   * VBF(+ISR/​FSR):​ q q → q q $\phi$ [for low $m_\phi$, possible tag on the 2 jets?​] ​
Line 48: Line 51:
  
  
-**3. Exotic Higgs decays: What are the holes?​** ​ //[contact: Stefania Gori]//+**3. Exotic Higgs decays: What are the holes?​** ​ //[contact: Stefania Gori, Jose Miguel No]//
  
 h → a a, Z a, a a' with a, a' scalar/​pseudoscalar (for Z a, a is pseudoscalar) h → a a, Z a, a a' with a, a' scalar/​pseudoscalar (for Z a, a is pseudoscalar)
2017/groups/higgs/lsp.1497747585.txt.gz · Last modified: 2017/06/18 02:59 by grgory.moreau