1 Feynman rules in momentum space

Throughout this notes we will adopt the following convention for momenta: any derivative acting of a field leads to $i p_{\mu}$, where the momentum p_{μ} is flowing out the vertex; that is, the wave function of a field is $e^{+i p \cdot x}$ when p is outgoing.

In the SM one has the following Feynman rules in momentum space:

$$
\begin{align*}
& Z_{\alpha}(q) \rightarrow W_{\mu}^{+}\left(p_{1}\right) W_{\nu}^{-}\left(p_{2}\right): \tag{1}\\
& i \epsilon_{\alpha}(q) \epsilon_{\mu}^{*}\left(p_{1}\right) \epsilon_{\nu}^{*}\left(p_{2}\right)\left[g \cos \theta_{W}\right]\left[\eta^{\mu \nu}\left(p_{2}-p_{1}\right)^{\alpha}-\eta^{\nu \alpha}\left(p_{2}+q\right)^{\mu}+\eta^{\mu \alpha}\left(p_{1}+q\right)^{\nu}\right] \\
& W_{\alpha}^{+}(q) \rightarrow W_{\mu}^{+}\left(p_{1}\right) Z_{\nu}\left(p_{2}\right): \\
& i \epsilon_{\alpha}(q) \epsilon_{\mu}^{*}\left(p_{1}\right) \epsilon_{\nu}^{*}\left(p_{2}\right)\left[-g \cos \theta_{W}\right]\left[\eta^{\mu \nu}\left(p_{2}-p_{1}\right)^{\alpha}-\eta^{\nu \alpha}\left(p_{2}+q\right)^{\mu}+\eta^{\mu \alpha}\left(p_{1}+q\right)^{\nu}\right] \tag{2}
\end{align*}
$$

and also:

$$
\begin{align*}
Z_{\alpha}(q) \rightarrow Z_{\mu}\left(p_{1}\right) h\left(p_{2}\right): & i\left[2 \frac{m_{Z}^{2}}{v}\right] \eta^{\mu \alpha} \epsilon_{\alpha}(q) \epsilon_{\mu}^{*}\left(p_{1}\right) \tag{3}\\
W_{\alpha}^{+}(q) \rightarrow W_{\mu}^{+}\left(p_{1}\right) h\left(p_{2}\right): & i\left[2 \frac{m_{W}^{2}}{v}\right] \eta^{\mu \alpha} \epsilon_{\alpha}(q) \epsilon_{\mu}^{*}\left(p_{1}\right), \tag{4}
\end{align*}
$$

The Feynman rules for the vertices with one ρ and two gauge bosons are ($p_{1,2}$ are flowing out of the vertex, $q \equiv p_{1}+p_{2}$ is flowing into it):

$$
\begin{align*}
& \rho_{\alpha}^{0}(q) \rightarrow W_{\mu}^{+}\left(p_{1}\right) W_{\nu}^{-}\left(p_{2}\right): \\
& i \epsilon_{\alpha}(q) \epsilon_{\mu}^{*}\left(p_{1}\right) \epsilon_{\nu}^{*}\left(p_{2}\right)\left[G^{0}\left(q^{2}\right) \frac{m_{W}^{2}}{p_{1} \cdot p_{2}}\right]\left[\eta^{\mu \nu}\left(p_{2}-p_{1}\right)^{\alpha}-\eta^{\nu \alpha}\left(p_{2}+q\right)^{\mu}+\eta^{\mu \alpha}\left(p_{1}+q\right)^{\nu}\right] \tag{5}\\
& \rho_{\alpha}^{+}(q) \rightarrow W_{\mu}^{+}\left(p_{1}\right) Z_{\nu}\left(p_{2}\right): \\
& i \epsilon_{\alpha}(q) \epsilon_{\mu}^{*}\left(p_{1}\right) \epsilon_{\nu}^{*}\left(p_{2}\right)\left[G^{ \pm}\left(q^{2}\right) \frac{m_{W} m_{Z}}{p_{1} \cdot p_{2}}\right]\left[\eta^{\mu \nu}\left(p_{2}-p_{1}\right)^{\alpha}-\eta^{\nu \alpha}\left(p_{2}+q\right)^{\mu}+\eta^{\mu \alpha}\left(p_{1}+q\right)^{\nu}\right] \tag{6}
\end{align*}
$$

Notice that for an on-shell ρ one has $p_{1} \cdot p_{2}=(1 / 2) q^{2}=(1 / 2) m_{\rho}^{2}$.

The Feynman rules for the vertices with one ρ, one vector boson and one Higgs boson have the form: ($p_{1,2}$ are flowing out of the vertex, $q \equiv p_{1}+p_{2}$ is flowing into it):

$$
\begin{align*}
\rho_{\alpha}^{0}(q) \rightarrow Z_{\mu}\left(p_{1}\right) h\left(p_{2}\right): & i\left[2 i G_{H}^{0}\left(q^{2}\right) m_{Z}\right] \eta^{\mu \alpha} \epsilon_{\alpha}(q) \epsilon_{\mu}^{*}\left(p_{1}\right) \tag{7}\\
\rho_{\alpha}^{+}(q) \rightarrow W_{\mu}^{+}\left(p_{1}\right) h\left(p_{2}\right): & i\left[2 i G_{H}^{ \pm}\left(q^{2}\right) m_{W}\right] \eta^{\mu \alpha} \epsilon_{\alpha}(q) \epsilon_{\mu}^{*}\left(p_{1}\right) . \tag{8}
\end{align*}
$$

In the fermion sector, we assume that the SM fermions couple to the ρ only through its mixing with the elementary $S U(2)_{L} \times U(1)_{Y}$ gauge fields, whose Lagrangian reads:

$$
\begin{equation*}
\bar{\psi} \gamma^{\mu}\left(g_{e l} \frac{\sigma^{a}}{2} L_{\mu}^{a}+g_{e l}^{\prime} Y B_{\mu}\right) \psi \tag{9}
\end{equation*}
$$

where Y is the hypercharge normalized such that $Y\left[u_{R}\right]=+2 / 3$. In the mass eigenbasis, the Feynman rules for the vertices with one ρ and two SM fermions are:

$$
\begin{align*}
& \rho_{\mu}^{+}(q) \rightarrow \bar{\psi}_{\uparrow}\left(p_{1}\right) \psi_{\downarrow}\left(p_{2}\right): \quad \bar{u}_{\uparrow}\left(p_{1}\right) V_{C K M} \gamma^{\mu}\left[\frac{g}{\sqrt{2}} H_{L}^{ \pm}\left(q^{2}\right) P_{L}\right] u_{\downarrow}\left(p_{2}\right) \epsilon_{\mu}(q) \tag{10}\\
& \rho_{\mu}^{0}(q) \rightarrow \bar{\psi}_{\uparrow}\left(p_{1}\right) \psi_{\uparrow}\left(p_{2}\right): \tag{11}\\
& \quad \bar{u}_{\uparrow}\left(p_{1}\right) \gamma^{\mu}\left[+\frac{1}{2}\left(g H_{L}^{0}\left(q^{2}\right)-g^{\prime} H_{Y}\left(q^{2}\right)\right) P_{L}+g^{\prime} H_{Y}\left(q^{2}\right) Q\left[\psi_{\uparrow}\right]\right] u_{\uparrow}\left(p_{2}\right) \epsilon_{\mu}(q) \tag{12}\\
& \rho_{\mu}^{0}(q) \rightarrow \bar{\psi}_{\downarrow}\left(p_{1}\right) \psi_{\downarrow}\left(p_{2}\right): \tag{13}\\
& \quad \bar{u}_{\downarrow}\left(p_{1}\right) \gamma^{\mu}\left[-\frac{1}{2}\left(g H_{L}^{0}\left(q^{2}\right)-g^{\prime} H_{Y}\left(q^{2}\right)\right) P_{L}+g^{\prime} H_{Y}\left(q^{2}\right) Q\left[\psi_{\downarrow}\right]\right] u_{\downarrow}\left(p_{2}\right) \epsilon_{\mu}(q) \tag{14}
\end{align*}
$$

where $\psi_{\uparrow}=\{u, \nu\}, \psi_{\downarrow}=\{d, l\}$ and $P_{L, R}=\left(1 \pm \gamma_{5}\right) / 2$.
The on-shell production and decay processes of the ρ are thus controlled by the following parameters: the on-shell values of the form factors $G^{0, \pm}\left(m_{\rho}^{2}\right), G_{H}^{0, \pm}\left(m_{\rho}^{2}\right), H_{L}^{0, \pm}\left(m_{\rho}^{2}\right), H_{Y}\left(m_{\rho}^{2}\right)$, and the masses of ρ^{0} and $\rho^{ \pm}$.

2 Determining the form factors from the $S O(5) / S O(4)$ chiral Lagrangian

We normalize the $S O(5)$ generators $T^{A}(A=1-10)$ so that $\operatorname{Tr}\left(T^{A} T^{B}\right)=\delta^{A B}$. We distinguish between broken $(S O(5) / S O(4))$ generators $T^{\hat{a}}$ and unbroken $(S O(4))$ generators T^{a}. The commutation rules can be found in Appendix A of arXiv:1109.1570.

As for the previous case, we follow the CCWZ formalism and use the vector notation where ρ_{μ} transforms as a gauge field in the adjoint of $S O(4)$. In practice we will consider separately the case of a ρ_{L} adjoint of $S U(2)_{L}$ and that of a ρ_{R} adjoint of $S U(2)_{R}$. The CCWZ covariant variables are defined by the following equations $(U=\exp (i \Pi(x)), \Pi(x)=$ $\left.\sqrt{2} T^{\hat{a}} \pi^{\hat{a}}(x) / f\right):$

$$
\begin{equation*}
-i U^{\dagger} D_{\mu} U=d_{\mu}^{\hat{a}} T^{\hat{a}}+E_{\mu}^{L a} T_{L}^{a}+E_{\mu}^{R a} T_{R}^{a} \equiv d_{\mu}+E_{\mu}^{L}+E_{\mu}^{R} \tag{15}
\end{equation*}
$$

The $S O(5) / S O(4)$ chiral Lagrangian then reads, at $O\left(p^{2}\right)$,

$$
\begin{equation*}
\mathcal{L}_{(\pi+\rho)}=\frac{f^{2}}{4}\left(d_{\mu}^{\hat{a}}\right)^{2}-\frac{1}{4 g_{*}^{2}} \rho_{\mu \nu}^{a} \rho^{a \mu \nu}+\frac{m_{*}^{2}}{2 g_{*}^{2}}\left(\rho_{\mu}^{a}-E_{\mu}^{a}\right)^{2} . \tag{16}
\end{equation*}
$$

The index labeling the ρ field runs over the adjoint of $S U(2)_{L}$ or of $S U(2)_{R}$. By using the commutation rules for $S O(5)$ it follows ($i=1,2,3$):

$$
\begin{align*}
d_{\mu}^{\hat{a}} & =-\frac{\sin \phi}{\sqrt{2}}\left(L_{\mu}^{i} \delta^{a i}-B_{\mu} \delta^{a 3}\right)+\sqrt{2} \frac{\partial_{\mu} \pi^{\hat{a}}}{f}+\ldots \\
E_{\mu}^{L a} & =\frac{1+\cos \phi}{2} L_{\mu}^{a}+\frac{1-\cos \phi}{2} B_{\mu} \delta^{a 3}+\frac{1}{2 f^{2}}\left[\epsilon^{a i j} \pi^{i} \partial_{\mu} \pi^{j}+\delta^{a i}\left(\pi^{i} \partial_{\mu} h-h \partial_{\mu} \pi^{i}\right)\right]+\ldots \tag{17}\\
E_{\mu}^{R a} & =\frac{1-\cos \phi}{2} L_{\mu}^{a}+\frac{1+\cos \phi}{2} B_{\mu} \delta^{a 3}+\frac{1}{2 f^{2}}\left[\epsilon^{a i j} \pi^{i} \partial_{\mu} \pi^{j}-\delta^{a i}\left(\pi^{i} \partial_{\mu} h-h \partial_{\mu} \pi^{i}\right)\right]+\ldots
\end{align*}
$$

where ϕ is the vacuum misalignment angle, such that $v=f \sin \phi$ and $\xi \equiv(v / f)^{2}=\sin ^{2} \phi$.
For $\xi \ll 1$ it is possible to diagonalize the mass matrix in two steps: one can first resolve the composite-elementary mixing before EWSB, and then rotate to find the mass eigenstates after EWSB. Before any rotation, the term of the Lagrangian relevant for the coupling of the ρ to NG bosons reads, for canonically normalized fields,

$$
\begin{equation*}
\mathcal{L}_{\pi+\rho}=-\frac{m_{*}^{2}}{2 g_{*} f^{2}}\left[\epsilon^{i j k} \pi^{j} \rho_{\mu}^{k} \pi^{i} \partial^{\mu} \pm \rho_{\mu}^{k}\left(\pi^{k} \partial_{\mu} h-h \partial_{\mu} \pi^{k}\right)\right] \ldots \tag{18}
\end{equation*}
$$

where the $+(-)$ sign in the second term in squared parenthesis is for a $\rho^{L}\left(\rho^{R}\right)$.
By performing the elementary-composite rotation one can derive the couplings of the physical ρ to SM fermions and vector bosons. In the case of a ρ_{L} all three components must be rotated, in an $S U(2)_{L}$-invariant way, to diagonalize the mass matrix:

$$
\binom{L_{\mu}^{a}}{\rho_{\mu}^{a}} \rightarrow\left(\begin{array}{cc}
\cos \theta_{L} & -\sin \theta_{L} \tag{19}\\
\sin \theta_{L} & \cos \theta_{L}
\end{array}\right)\binom{L_{\mu}^{a}}{\rho_{\mu}^{a}}, \quad \tan \theta_{L} \equiv \frac{g_{e l}}{g_{*}}, \quad g=g_{*} \sin \theta_{L} .
$$

The masses of the heavy mass eigenstates and the strength of the $\rho^{+} \rho^{-} \rho^{0}$ coupling are, before EWSB,

$$
\begin{equation*}
m_{\rho^{ \pm}}=m_{\rho^{0}}=m_{\rho}=\frac{m_{*}}{\cos \theta_{L}}, \quad g_{\rho}=g_{*} \frac{\cos 2 \theta_{L}}{\cos \theta_{L}}=2 g \cot 2 \theta_{L}, \tag{20}
\end{equation*}
$$

hence

$$
\begin{equation*}
a_{\rho} \equiv \frac{m_{\rho^{+}}}{g_{\rho} f}=\frac{m_{*}}{g_{*} f} \frac{1}{\cos 2 \theta_{L}} \equiv a_{*} \frac{1}{\cos 2 \theta_{L}}=a_{*} \sqrt{1+4 \frac{g^{2}}{g_{\rho}^{2}}} . \tag{21}
\end{equation*}
$$

The form factors are:

$$
\begin{align*}
& G^{0}\left(q^{2}\right)=G^{ \pm}\left(q^{2}\right)=\frac{m_{\rho}^{2}}{2 f^{2}} \frac{\cos 2 \theta_{L}}{g_{\rho}}=\frac{m_{\rho}^{2}}{2 g_{\rho} f^{2}} \frac{1}{\sqrt{1+4 \frac{g^{2}}{g_{\rho}^{2}}}} \tag{22}\\
& G_{H}^{0}\left(q^{2}\right)=G_{H}^{ \pm}\left(q^{2}\right)=\frac{m_{\rho}^{2}}{2 f^{2}} \frac{\cos 2 \theta_{L}}{g_{\rho}}=\frac{m_{\rho}^{2}}{2 g_{\rho} f^{2}} \frac{1}{\sqrt{1+4 \frac{g^{2}}{g_{\rho}^{2}}}} \tag{23}\\
& H_{L}^{0}\left(q^{2}\right)=H_{L}^{ \pm}\left(q^{2}\right)=-\tan \theta_{L}=\frac{1}{2}\left(\frac{g_{\rho}}{g}-\sqrt{4+\frac{g_{\rho}^{2}}{g^{2}}}\right) \tag{24}\\
& H_{Y}\left(q^{2}\right)=0, \tag{25}
\end{align*}
$$

In the case of a ρ_{R}, instead, only the neutral component undergoes the elementary-composite mixing:

$$
\binom{B_{\mu}}{\rho_{\mu}^{3}} \rightarrow\left(\begin{array}{cc}
\cos \theta_{R} & -\sin \theta_{R} \tag{26}\\
\sin \theta_{R} & \cos \theta_{R}
\end{array}\right)\binom{B_{\mu}}{\rho_{\mu}^{0}}, \quad \tan \theta_{R} \equiv \frac{g_{e l}^{\prime}}{g_{*}}, \quad g^{\prime}=g_{*} \sin \theta_{R}
$$

so that the physical masses and $\rho^{+} \rho^{-} \rho^{0}$ couplings strength read:

$$
\begin{equation*}
m_{\rho^{ \pm}}=m_{*}, \quad m_{\rho^{0}}=\frac{m_{*}}{\cos \theta_{R}}=m_{\rho^{ \pm}} \sqrt{1+\frac{g^{\prime 2}}{g_{\rho}^{2}}}, \quad g_{\rho}=g_{*} \cos \theta_{R}=g^{\prime} \cot \theta_{R} \tag{27}
\end{equation*}
$$

hence

$$
\begin{equation*}
a_{\rho} \equiv \frac{m_{\rho^{+}}}{g_{\rho} f}=\frac{m_{*}}{g_{*} f} \frac{1}{\cos \theta_{R}} \equiv a_{*} \frac{1}{\cos \theta_{R}}=a_{*} \sqrt{1+\frac{g^{\prime 2}}{g_{\rho}^{2}}} . \tag{28}
\end{equation*}
$$

The form factors are:

$$
\begin{align*}
& G^{0}\left(q^{2}\right)=\frac{m_{\rho^{0}}^{2} \cos ^{2} \theta_{R}}{2 g_{\rho} f^{2}}=\frac{m_{\rho^{0}}^{2}}{2 g_{\rho} f^{2}} \frac{1}{1+\frac{g^{\prime 2}}{g_{\rho}^{2}}}, \quad G^{ \pm}\left(q^{2}\right)=\frac{m_{\rho^{ \pm}}^{2} \cos \theta_{R}}{2 g_{\rho} f^{2}}=\frac{m_{\rho^{ \pm}}^{2}}{2 g_{\rho} f^{2}} \frac{1}{\sqrt{1+\frac{g^{\prime 2}}{g_{\rho}^{2}}}}(29 \tag{29}\\
& G_{H}^{0}\left(q^{2}\right)=-\frac{m_{\rho^{0}}^{2} \cos ^{2} \theta_{R}}{2 g_{\rho} f^{2}}=-\frac{m_{\rho^{0}}^{2}}{2 g_{\rho} f^{2}} \frac{1}{1+\frac{g^{\prime 2}}{g_{\rho}^{2}}}, \quad G_{H}^{ \pm}\left(q^{2}\right)=-\frac{m_{\rho^{ \pm}}^{2} \cos \theta_{R}}{2 g_{\rho} f^{2}}=-\frac{m_{\rho^{ \pm}}^{2}}{2 g_{\rho} f^{2}} \frac{1}{\sqrt{1+\frac{g^{\prime 2}}{g_{\rho}^{2}}}} \tag{30}\\
& H_{L}^{0}\left(q^{2}\right)=H_{L}^{ \pm}\left(q^{2}\right)=0 \tag{31}\\
& H_{Y}\left(q^{2}\right)=-\tan \theta_{R}=-\frac{g^{\prime}}{g_{\rho}} . \tag{32}
\end{align*}
$$

