
Update of the Binoth Les Houches Accord for

a standard interface between Monte Carlo

tools and One-Loop Programs

S. Alioli a, S. Badger b, J. Bellm c, B. Biedermann d,
F. Boudjema e, G. Cullen f , A. Denner g, H. van Deurzen h,
S. Dittmaier i, R. Frederix j, S. Frixione j, M.V.Garzelli k,
S. Gieseke c, E.W.N. Glover p, N. Greiner h, G. Heinrich h,
V. Hirschi l, S. Höche m, J. Huston n, H. Ita i, N. Kauer o,

F. Krauss p, G. Luisoni h, D. Mâıtre p, F. Maltoni q, P. Nason t,
C. Oleari s, R. Pittau r, S. Plätzer u, S. Pozzorini v, L. Reina w,

C. Reuschle c, T. Robens x, J. Schlenk h, M. Schönherr p,
F. Siegert i, J.F.von Soden-Fraunhofen h, F. Tackmann u,

F. Tramontano y, P. Uwer d, G. Salam j, P. Skands j,
S. Weinzierl z, J. Winter h, V. Yundin b, G. Zanderighi aa,

M. Zaro q

aLawrence Berkeley National Laboratory and University of California, Berkeley,
CA 94720, USA

bThe Niels Bohr Institute,University of Copenhagen, DK-2100 Copenhagen,
Denmark

cKIT Karlsruhe, Germany
dHumboldt-Universität zu Berlin, Institut für Physik, D-12489 Berlin, Germany
eLAPTH, Université de Savoie and CNRS, F-74941 Annecy-le-Vieux, France
fDeutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen,

Germany
gUniversität Würzburg, Institut für Theoretische Physik und Astrophysik,D-97074

Würzburg, Germany
hMax Planck Institute for Physics, 80805 Munich, Germany

iAlbert-Ludwigs-Universität Freiburg, Physikalisches Institut, D-79104 Freiburg,
Germany

jCERN/PH, CH–1211 Geneva 23, Switzerland
kUniversity of Nova Gorica, SI 5000 Nova Gorica, Slovenia

lEPFL Lausanne, Switzerland
mSLAC, Stanford University, Stanford, CA 94309, USA

Preprint submitted to Elsevier 13 August 2013



nMichigan State University, East Lansing, MI 48840, USA
oDepartment of Physics, Royal Holloway, University of London, Egham TW20

0EX, UK
pInstitute for Particle Physics Phenomenology, University of Durham, Durham,

DH1 3LE, UK
qCP3, Université Catholique de Louvain,1348 Louvain-la-Neuve, Belgium

rDepartamento de Fisica Teorica y del Cosmos CAFPE, Universidad de Granada,
E-18071 Granada, Spain

sUniversità di Milano-Bicocca and INFN, Sezione di Milano-Bicocca, 20126
Milano, Italy

tINFN, Sezione di Milano-Bicocca, 20126 Milano, Italy
uDESY Hamburg, Germany

vUniversity of Zurich, Institute for Theoretical Physics, CH-8057 Zurich,
Switzerland

wFlorida State University, Tallahassee, FL 32306-4350, USA
xTechnical University Dresden, Germany

yDipartimento di Scienze Fisiche, Università degli studi di Napoli “Federico II”
and INFN, Sezione di Napoli, I-80125 Napoli, Italy
zPrisma cluster of Excellence, Institute for Physics,

Johannes-Gutenberg-Universität Mainz, D-55099 Mainz, Germany
aaRudolf Peierls Centre for Theoretical Physics, Oxford OX13PN, UK

draft version 13 August 2013

Abstract

We present an update of the Binoth Les Houches Accord (BLHA) to standardise
the interface between Monte Carlo programs and codes providing one-loop matrix
elements.

Key words: Monte Carlo tools, one-loop computations, Les Houches Accord,
automation

1 Corresponding author: gudrun@mpp.mpg.de

2



1 Introduction

The past years have seen an enormous progress in the development of programs
providing next-to-leading order corrections for multi-particle final states. This
is due to new developments concerning the calculation of one-loop amplitudes
as well as important progress on the Monte Carlo side to account for real
radiation at NLO. The modular structure of NLO calculations allows to share
the tasks between a “One-Loop Provider (OLP)”, providing the virtual cor-
rections, and a Monte Carlo program (MC) taking care of all the parts which
do not involve loops. To facilitate the cross-talk between those two engines,
a standard interface has been worked out during the workshop on Physics at
TeV Colliders at Les Houches in June 2009, called the “Binoth Les Houches
Accord (BLHA)” [1].

Meanwhile, the use of this interface [2–16] and further developments in OLP
and MC codes have brought up the necessity to extend it with further options.
The aim of this article is to provide a public document where an update
of the BLHA is proposed and conventions are defined to pass parameters,
calculational schemes etc., and to return less inclusive information, such as
matrix elements which are not summed over all colours and helicities.

2 Existing features of the interface

We do not aim at an exhaustive description of the complete framework of the
original interface here, referring to [1] for more details. However, we sketch the
main features any extension will build upon.

The interaction between an OLP and a MC proceeds in two phases: the pre-
runtime phase where order and contract files are established, and the actual
runtime phase. In the pre-runtime phase, the MC creates a file called order

file containing information about the setup and the subprocesses it will need
from the OLP to perform the computation. A subprocess can be either a
partonic subprocess or a component thereof (e.g. a specific helicity amplitude
or a colour partial amplitude). The particles are identified by specifying their
particle data group (PDG) code.

A flowchart of the setup between Monte Carlo program and One Loop Provider
(where the new functions defined in BLHA version 2 are included already) is
shown in Fig. 1. As an example, an order file written by Sherpa for pp →
(Z → e+e−) + 1 jet, using the original standards, is given in Fig. 2.

The OLP reads the order file and checks availability for each item. Then it

3



Monte Carlo OLP

write order file

read contract file

read order file

write contract file

 runtime  phase

call OLP_Start

 call OLP_Info

call OLP_PrintParameter

call OLP_SetParameter (static parameters)

give phase space point, scale

return result, status

compute Born,  real 
radiation, IR subtraction full NLO result

  run initialisation  phase

call OLP_SetParameter (dynamic parameters)

pre-runtime  phase

call OLP_EvalSubProcess2 compute virtual part

Fig. 1. Illustration of an interplay between Monte Carlo program and One Loop
Provider (OLP). In the pre-runtime phase of the interface, the OLP receives an
order file placed by the MC and checks availability of the contents. Then it
returns a contract file to the MC where the contents are confirmed if available.
At runtime, the Monte Carlo program provides Born, real radiation part minus
infrared subtraction terms and integrated subtraction terms. The OLP provides the
virtual amplitude for each phase space point. The phase space integration is done
by the Monte Carlo program.

returns a contract file telling the MC what it can provide, and labelling
the individual subprocesses. An example contract file generated by GoSam as
a response to Sherpa’s order file, looks like the one in Fig. 3. From this file,
one can already see where an upgrade of the interface is clearly needed: as the
original interface version did not contain a standard way to pass parameters,
the definition of masses and widths is marked as “Ignored by OLP” in the
contract file. Certainly the parameters are passed in the actual calculation, but
in a non-standardised way, as an individual agreement between the particular
MC and OLP. How to define a standard for the passing of parameters is
described in Section 3.1.

The first integer label after each subprocess specifies that this subprocess con-
tains only one component (if it was composed e.g. of several helicity configu-
rations to be evaluated separately, this first label would be an integer larger
than one). The second integer acts as a label for each subprocess, used at
runtime to call the individual subprocesses.

4



# OLE_order.lh

# Created by Sherpa-1.4.1

MatrixElementSquareType CHsummed

CorrectionType QCD

IRregularisation DRED

AlphasPower 1

AlphaPower 2

OperationMode CouplingsStrippedOff

Z_mass 91.188

Z_width 2.49

W_mass 80.419

W_width 2.0476

sin_th_2 0.221051079833

# process list

1 -1 -> 11 -11 21

21 1 -> 11 -11 1

21 -1 -> 11 -11 -1

2 -2 -> 11 -11 21

21 2 -> 11 -11 2

21 -2 -> 11 -11 -2

Fig. 2. Example of a BLHA1 order file for the process Z+jet, created by Sherpa.

After the contract has been “signed”, the communication between MC and
OLP proceeds via function calls. Signing a contract means that the OLP
basically copies the order file and appends an OK after each setting, separated
by a “|” character. For the requested subprocesses, the OLP answer should
be the integer labels described above, denoting the components and the labels
of the individual subprocesses. If a setting is not supported or a subprocess
is not available, the OLP should indicate this with Error instead of OK after
the setting. Preferably, the message “Error” should be supplemented by a
specification of the error, like unsupported flag, process not available,
etc. More examples can be found in [1]. In any case, the program should not
proceed if Error appears in the contract file.

If the contract file does not contain any Error statements, the communication
via function calls can be started. In the original standard, there were only two
functions which allowed the transfer of information between the two programs.
One was the function OLP Start(char* fname, int* ierr) which should be
called by the MC when initializing the runtime phase. The character string
in the first argument contains the name of the contract file. The integer in
the second argument is set to 1 by the function call if the contract file is
accepted. In case of failure, the second argument is different from one, and an
error message of the type Error: can not handle contract file should

5



# vim: syntax=olp

#@OLP GOSAM 1.0

#@IgnoreUnknown True

#@IgnoreCase False

IRregularisation DRED | OK

AlphaPower 2 | OK

sin_th_2 0.221051079833 | OK # Ignored by OLP

Z_width 2.49 | OK # Ignored by OLP

Z_mass 91.188 | OK # Ignored by OLP

W_mass 80.419 | OK # Ignored by OLP

CorrectionType QCD | OK

AplhasPower 1 | OK

W_width 2.0476 | OK # Ignored by OLP

OperationMode CouplingsStrippedOff | OK

MatrixElementSquareType CHsummed | OK

1 -1 -> 11 -11 21 | 1 3

21 1 -> 11 -11 1 | 1 4

21 -1 -> 11 -11 -1 | 1 5

2 -2 -> 11 -11 21 | 1 0

21 2 -> 11 -11 2 | 1 1

21 -2 -> 11 -11 -2 | 1 2

Fig. 3. Example of a BLHA1 contract file for the process Z+jet, created by GoSam.
As the original interface did not define a standard way how to pass parameters, the
definition of masses and widths is marked as “Ignored by OLP” in the contract file,
while the parameters are passed in a non-standardised way.

be issued.

The second function which was already in place, but will have a different
argument list with the new standards, is the function OLP EvalSubProcess.
The parameters to be passed to the OLP EvalSubProcess function according
to the original version of the interface were (in this order):

• The integer label of the subprocess (as given in the contract file).
• An array containing the components of the momenta. The momenta are

placed in a one dimensional array, where physical scattering kinematics is
used, i.e. k1+k2 = k3+· · ·+km. For each particle, the kinematics is specified
by a 5-tuple: (Ej, k

x
j , k

y
j , k

z
j ,Mj). Thus a full m-particle event is specified by

an array of 5 × m double precision numbers filled with the m 5-tuples,
ordered by the particle labels.
• The renormalisation scale, µR, as a double precision number, or an array of

scales, if different scales need to be passed.
• The strong coupling αS(µR), where αS(µR) = 1 can be used to indicate that

the MC multiplies the returned values with the adequate coupling constants.
• The array where the computed results are returned.

6



The returned array is expected to contain at least four real-valued double
precision numbers

PoleCoeff2, PoleCoeff1, PoleCoeff0, BornSquare

which correspond to the colour- and helicity-summed (resp. averaged for the
initial state) terms A2, A1, A0, |Born|2.

The conventions for the overall prefactor are as in the original proposal [1]
and are briefly repeated here. The general structure of the virtual correction
is given by

I
(
{kj},R.S., µ2

R, αS(µ
2
R), α, . . .

)
= C(ε)

(
A2

ε2
+
A1

ε
+ A0

)
, (1)

where R.S. defines the infrared regularisation scheme. The Laurent coefficients
Aj are real-valued. The overall constant is given by

C(ε) =
(4π)ε

Γ(1− ε)

(
µ2

µ2
R

)ε
= (4π)ε

Γ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)

(
µ2

µ2
R

)ε
. (2)

3 New features of the interface

The new features should serve to pass more detailed information between
the MC and the OLP. However, it should always be kept in mind that the
general setup is such that the MC is steering the calculation. The MC orders
the virtual amplitude for the given settings, and gets back the result and a
relative accuracy informing about the quality of the result. The interface does
not foresee a setup where the OLP can cause changes in the MC settings.

For the pre-runtime phase, we define a number of new keywords to allow
for more options in the order/contract files. The valid keywords are listed in
Appendix A.

As the new standards are not backwards compatible, we propose to place the
keyword InterfaceVersion, which can take the values BLHA1 or BLHA2, on
top of the order file. This way, if the OLP does not support one or the other,
it can issue an error message and stop without proceeding further.

Once order and contract files are established, one can distinguish two phases:
The run initialization phase and the actual runtime phase. The functions
which are used for the communication between MC and OLP before exchang-

7



ing phase space points and results are the following (described in more detail
in the subsections below and listed in Appendix B):

• OLP Start(char* fname, int* ierr): same as in BLHA1.
• OLP Info(char olp name[15],char olp version[15],char message[255]):

the function serves to keep track of the type and version of the OLP which
has been used, and to encourage proper citation. The arguments are the
name of the OLP, the version, and a string which contains information
about the relevant publications, for example the bibtex identifier.
• OLP SetParameter(char* para, double* re, double* im, int* ierr):

This function is used to define static parameters at the beginning of a run,
and to exchange dynamic parameters at runtime.
• OLP PrintParameter(char* filename): prints out a list of the actual pa-

rameter settings to the file filename.

At runtime, the OLP returns the values for the virtual amplitude to the MC
via the function OLP EvalSubProcess2. As compared to the original function
OLP EvalSubProcess described in Section 2, the new function OLP EvalSub--
Process2 does not contain the passing of coupling constants anymore, as
their values are now passed separately, using OLP SetParameter. It also has
a new argument appended which is useful to assess the accuracy of the result
returned by the OLP. With the new argument list, the function is not back-
wards compatible with the original standard. Therefore, to avoid confusion
with different versions, the new function is called OLP EvalSubProcess2.

OLP EvalSubProcess2(int* i,double* pp,double* mu,double* rval,double* acc)

The arguments are:

• i: pointer to a (one element) array with the label of the subprocess as given
in the contract file
• pp: pointer to an array of momenta, conventions (Ej, k

x
j , k

y
j , k

z
j ,Mj)

• mu: pointer to the renormalisation scale
• rval: pointer to an array of return values
• acc: pointer to a one element array with the outcome of the OLP internal

accuracy check (see Section 3.3).

Note: originally, the argument list of OLP EvalSubProcess contained both
µr and αs(µr): OLP EvalSubProcess(int i,double* pp,double mu,double

alphas,double* rval). However, αs(µr) can now be set using the new func-
tion OLP SetParameter to pass also dynamical parameters. This setup is also
clearer for mixed (e.g. QCD-EW) corrections or corrections where αs at dif-
ferent scales should be used within the same calculation.

8



The length of the array rval is at least four, containing the Laurent coefficients
A2, A1, A0 and |Born|2. However, for the case where colour/spin correlated
matrix elements are returned, the array rval must be longer. Details about
the labelling conventions for such cases are given in Section 3.8.

The last argument acc should return information about the OLP internal
accuracy check(s), denoting the relative accuracy of the virtual amplitude at
this phase space point as estimated by the OLP. OLPs which only provide a
binary stability test will return 0. for passed, or a large number, say 105, for
failed. More details about unstable phase space points are given in Section 3.3.

The list of defined functions is given in Appendix B, where the C/C++ version
(with pointers in the argument list) is given. The C++ version with function
calls by reference as well as a Fortran (2003) module for binding with C/C++

can be found at http://phystev.in2p3.fr/wiki/2013:groups:sm:blha:api.

3.1 Passing parameters

In the first version of the interface, the standard only allowed to pass a fixed
amount of information at the level of the order/contract files. However, to be
able to pass also dynamical parameters like running masses, and to have more
flexibility in the definition of individual parameters, we suggest the following
extension.

Parameters can be passed by the function

OLP SetParameter(char* para, double* re, double* im, int* ierr)

where the first argument is a (pointer to a) string serving as a keyword for
the parameter to be set, followed by two double precision numbers so that
complex parameters can also be passed (in case of real parameters, the second
double is zero). The integer in the fourth argument is set by the OLP to tell
the MC whether the setting of the parameter was successful.

ierr=1 means the parameter has been set successfully,
ierr=0 means failure: issue an error message,
ierr=2 means that the parameter is unknown or the setting is ignored (for
example because it is irrelevant for the considered case), but the MC program
should proceed.

The function OLP SetParameter can be called at runtime, for every phase
space point, if used to define a dynamic parameter. Obviously it can also be
called once (for each particular parameter that needs to be passed) if this is a

9



static parameter needed only at the run initialization phase.

Further, we propose a routine OLP PrintParameter(char* filename) giv-
ing out a list of the actual parameter settings used in the calculation, where
filename is the name of the output file. The intention of this function is just
to inform the user, consistency between the parameters will not be checked.
The output format of OLP PrintParameter should be
ParameterName Value State,
where the separator is a space, and Value can be complex, denoted by (real

part, imaginary part) in case it is complex. State can serve to distinguish
the parameters set by OLP SetParameter or defined by Model from fixed in-
ternal ones and is optional (as this info may not be readily available in all
programs).

3.2 Defining the model

We distinguish two alternative ways of model definition, which we will denote
by “keyword model” respectively “UFO model” in the following.

Model definitions offer the possibility to define some global settings in the
order file, which are intrinsic to the model (e.g. SM, MSSM), which is used.
This is done using the required keyword Model. For example, Model: SMdiag

should set the CKM matrix to unity globally.

In the “keyword model” setup, the parameters that need to be set within
a certain model are passed via PDG codes [17] and keywords with naming
conventions as specified in Fig. 4 for the Standard Model. The numbers in
parenthesis after mass and width denote the particle’s PDG code.

In the “UFO model” setup, the parameters are defined in UFO (Universal Feyn-
rules Output) [18] format, which is particularly useful for calculations beyond
the Standard Model. The import of the UFO model file should be specified in
the order file by
Model ufo:/path to ufo model-directory/.

The UFO format also provides human readable name attributes for the model
parameters, as well as the SLHA identifiers [19–21]. OLPs which support the
import of UFO model files typically also support the name attributes. The
UFO model setup entails the use of a SLHA parameter card to initialize the
runtime phase. This requires an additional keyword ParameterCard, followed
by the path to the SLHA parameter card, to be placed into the order file
when using the UFO model setup. The parameters which are set by reading in
the SLHA parameter card do not need to be set again by OLP SetParameter.
However, OLP SetParameter needs to be used at runtime for the dynamic

10



keyword parameter

mass(5) b quark mass

mass(6) top quark mass

width(6) top quark width

sw2 sin2 θw

vev SM vacuum expectation value

Gf GFermi

VV12 Vud
...

Fig. 4. List of keywords to define parameters to be passed by the function
OLP SetParameter.

parameters. In this case the SLHA block name should appear as a prefix
prepended to the parameter name, in the form <BlockName>&&<ParamName>.
To avoid confusion, this requires that the characters ‘&&’ should never appear
in any block or parameter name.

Note that we do not require the capability to import UFO model files to belong
to the “minimal standard”. However, at least one of the two ways described
above to define the model parameters should be implemented to comply with
the standard.

3.3 Treatment of unstable phase-space points

In a complex multi-leg one-loop calculation, some of the phase space points
may lead to large numerical cancellations within the virtual amplitude, leading
to a result which is not trustworthy at this particular point. It is the task of the
OLP to make precision tests, such that it can trigger some rescue procedure
in case the phase space point is found to be problematic. In order to steer
precision requirements from the order file, we introduce the following:

• The OLP should pass information about the quality of the virtual result
at a given phase space point back to the MC, by means of the function
OLP EvalSubProcess2. The last argument of OLP EvalSubProcess2 should
be a (double precision) number “acc”, giving the relative accuracy the OLP
attributes to the finite part of the loop amplitude at this phase space point.
Note that this value will depend on the type of internal stability test(s)
made by the OLP. The assessment of the internal “relative accuracy” can
therefore vary between different OLPs and even within the same OLP if it

11



can switch between different types of stability tests. However, it allows the
MC to give a more reliable overall accuracy estimate for the cross section
than if it had just a “pass” or “fail” information from the OLP side.
• The user should be able to specify the overall accuracy he would like to

reach (this is typically done in the MC runcard). For this purpose there
should be an (optional) keyword in the order file which specifies the target
accuracy, called AccuracyTarget, denoting a relative accuracy. The OLP
can use it to decide whether an internal rescue system should be triggered
if its stability test outcome gives a value larger than AccuracyTarget. If
AccuracyTarget is not specified, the OLP will use its internal settings to
decide if a rescue system should be triggered.

It could be that a particular OLP is not able to provide a number for the
relative accuracy, but only can deliver a “binary” test outcome passed or
failed. In this case, acc=0.0 stands for passed, and in the case of failed, acc
can be set to a large value, for example 105. In order to allow the MC to
distinguish the “binary test” return value for passed from a “quantitative
test” return value for passed, we can require that quantitative stability tests
will return a perfect accuracy as working precision (typically 1d-17, 1d-34),
while binary stability tests return exactly 0.0.
• There should be the possibility that the OLP prints points classified as “un-

stable” to a file for monitoring purposes. Therefore we propose an optional
keyword DebugUnstable in the order file which can be used to keep infor-
mation about points classified as “unstable”. In the case of DebugUnstable
True, the phase space point should be printed to a file to allow further di-
agnostics. The format of such a debug file can be defined internally within
the OLP. The threshold which defines whether a point is classified as “un-
stable” (after eventual rescue attempts) does not need to be equal to the
value of AccuracyTarget, but this should be the default. In any case,
DebugUnstable is mostly for OLP developers for monitoring purposes.

We emphasize again that after all, it is left to the MC to decide what to do
with the phase space point, based on acc returned by OLP EvalSubProcess2.

3.4 Different powers of coupling constants, merging different jet multiplicities

So far, the interface was tailored to NLO calculations for a fixed jet multi-
plicity, and focused on QCD corrections rather than electroweak corrections.
However, mixed QCD-EW corrections, or expansions in parameters other than
αs or α, require a more flexible scheme to define the desired orders in coupling
constants.

In addition, recent developments [15, 22–27] propose a merging method for
matched NLO predictions with varying jet multiplicity. In order to calculate

12



merged samples, the Monte Carlo program needs to ask the OLP for one-loop
matrix elements with different jet multiplicities and therefore different powers
of the coupling constant.

CouplingPower QCD 2

# process list 2j

1 1 -> 1 1

1 -1 -> 1 -1

1 -1 -> 2 -2

1 -1 -> 21 21

21 21 -> 21 21

CouplingPower QCD 3

# process list 3j

1 1 -> 21 1 1

1 -1 -> 21 1 -1

1 -1 -> 21 2 -2

1 -1 -> 21 21 21

21 21 -> 21 21 21

CouplingPower QCD 4

AmplitudeType Tree

# process list 4j

21 21 -> 21 21 21 21

1 -1 -> 21 21 21 21

1 -1 -> -2 2 -2 2

1 -1 -> -1 1 -1 1

21 21 -> 21 21 21 21

Fig. 5. Example of the part of an order file containing different settings for different
sets of subprocesses.

These situations can be accounted for by allowing different settings for differ-
ent subprocesses, see Fig. 5. A setting is valid until it is explicitly overwritten.
This setup can be used for merged samples as well as mixed QCD/EW cor-
rections. It can also be used to pass additional information referring only to
particular subprocesses, as indicated e.g. by AmplitudeType Tree. In the lat-
ter case, the first three elements of the returned array, i.e. A2, A1, A0, will be
zero.

3.5 Extras

The keyword Extra can be used to write special requirements relevant to the
OLP into the order file. If there is a way to generate the order file for the OLP
from the MC run card, the MC will write them to the order file, but otherwise
ignore them. The difference between optional keywords and keywords preceded

13



by the “Extra” flag is that optional keywords have defined names (as listed in
Appendix A.2), while keywords flagged by “Extra” can be very OLP specific
and do not have a standard name.

For example, requirements concerning a colour expansion, or passing only par-
ticular helicity configurations, could be put under the Extra flag. The Extra

flag can also be used to define that MC and OLP should use the MiNLO [28]
procedure, if the latter is available on both sides.

With regards to overall averaging and symmetry factors, the default is that
amplitudes are summed over final state colours and polarisations and averaged
over initial state colours and polarisations, and that symmetry factors for
identical final state particles are included. A possibility to change this could
look as follows:

Extra HelAvgInitial False

Extra ColAvgInitial False

Extra MCSymmetrizeFinal False

3.6 Electroweak corrections

In the case of electroweak (EW) corrections, it is of particular importance to
check the consistency of the parameters, for example the relation between
MZ ,MW and sin2 θw. The scheme is set in the order file by the keyword
EWScheme, which can take the values alphaGF (also known as Gµ-scheme),
alpha0, alphaMZ, alphaRUN, alphaMSbar, OLPDefined. Then the parameters
are set using OLP SetParameter. The OLP imports these parameters. The
integer in the last argument only indicates if the import was successful or not.
It is left to the user to ensure consistency of the parameters within the given
scheme.

3.7 An example order file

An example for an order file is shown in Fig. 6. The lines following the keyword
Extra stand for any extra information which may be relevant to the OLP
(which, in this example, is parsed from the Sherpa runcard to the order file).

14



# OLE_order.lh

# Created by Sherpa-2.0.0

InterfaceVersion BLHA2

Model SMdiag

AmplitudeType CHsummed

CorrectionType QCD

IRregularisation DRED

WidthScheme ComplexMass

EWScheme alphaGF

AccuracyTarget 0.0001

DebugUnstable True

Extra Line1

Extra Line2

# process list

CouplingPower QCD 2

CouplingPower QED 0

1 -1 -> 6 -6

-1 1 -> 6 -6

21 21 -> 6 -6

CouplingPower QCD 3

CouplingPower QED 0

1 -1 -> 6 -6 21

1 21 -> 6 -6 1

-1 1 -> 6 -6 21

-1 21 -> 6 -6 -1

21 1 -> 6 -6 1

21 -1 -> 6 -6 -1

21 21 -> 6 -6 21

Fig. 6. Example of an order file for tt̄ + 0, 1 jets produced by Sherpa-2.0.0 . The
expressions Line1,Line2 following the keyword Extra denote any extra information
which may be relevant for the OLP.

3.8 Colour- and spin correlated tree amplitudes

Going beyond the generic case of colour and helicity summed matrix ele-
ments, it becomes difficult to satisfy special needs of different programs with
one global standard. Results for polarized amplitudes in general depend on
phase conventions, and approximations in a colour expansion, like e.g. “lead-
ing colour”, will very likely be defined differently in different codes. Nonethe-
less, the interface in principle allows to pass very specific information using
the Extra flag. However, the details probably remain to be implemented and
tested individually between specific programs before trying to establish any
standards.

15



Below we only focus on a particular example going beyond CHsummed, which
is passing colour- and spin correlated tree amplitudes. The definitions are ori-
ented at the case where they are used for the construction of NLO subtraction
terms in the Catani-Seymour formalism [29].

The MC can ask for colour- or spin correlated tree matrix elements by writing
one (or several) of the following keywords into the order file:

AmplitudeType ccTree # colour correlated tree amplitude

AmplitudeType scTree # spin correlated tree amplitude

The defaults for AmplitudeType are Loop and CHSummed. If only Tree or Loop
are specified, this automatically means CHSummed.

The new setup to define individual settings for blocks of subprocesses can be
used to call certain subprocesses twice: one for the colour/spin correlated tree
case and one for the loop case. An example is given by

AmplitudeType ccTree

1 -1 -> 21 1 -1

21 21 -> 21 21 21

AmplitudeType Loop

1 -1 -> 21 1 -1

21 21 -> 21 21 21

If the amplitude returned by the OLP is not colour/polarisation summed,
the values to be returned by OLP EvalSubProcess2 form a matrix in colour
respectively Lorentz space. To pass the values in an unambiguous way, it is
necessary to define the order in which the matrix elements are written into
the array rval returned by the OLP.

Colour correlations

The colour correlated matrix elements

Cij = 〈M|Ti ·Tj|M〉 (3)

can be defined to be real valued quantities and independent of the particular
colour basis chosen. Note that Ti · Tj is symmetric under exchange of i and
j. Further, T2

i = Ci1 with Ci = CF if the leg i belongs to the 3 or 3̄ represen-
tation of SU(3), and Ci = CA if the leg belongs to the 8 representation, and
〈M|Ti ·Ti|M〉 = Ci 〈M|M〉 = Ci |M|2 is just proportional to the tree level
amplitude squared.

16



The minimal information that needs to be passed for colour correlated matrix
elements are the upper non-diagonal n(n− 1)/2 elements of an n× n matrix,
where n is the number of legs attached to the process of interest. Entries
belonging to non-coloured legs should be ignored.

For a process which is flagged as AmplitudeType ccTree the OLP should
(through rval returned by OLP EvalSubProcess2) return an array of length
n(n− 1)/2 such that the element at position i+ j(j− 1)/2 (counting external
legs and elements in the array starting from zero) contains the result for Cij
with i < j.

Here and in the following we assume that i labels the emitter and j the spec-
tator.

Spin correlations

When gluons are present at the Born level, the spin correlated Born amplitude
is obtained by Lorentz-contracting the corresponding Born terms with the
gluon polarization vectors. It can be shown that these amplitudes can be
written in terms of

Sij = 〈Mi,−|Ti ·Tj|Mi,+〉 , (4)

with

〈Mi,−|Ti ·Tj|Mi,+〉 = (5)∑
λ1,...,λi−1,λi+1,...,λn

C〈Mλ1,...,λi−1,−,λi+1,...,λn|Ti ·Tj|Mλ1,...,λi−1,+,λi+1,...,λn〉C .

Here, |〉C indicates an object which is a vector in colour space only, and we
have made explicit the spin dependence by the subscripts λ and the fixed ±
polarization of the gluon i of interest. Depending on the organisation of the
subtraction terms, non-trivial colour correlations i 6= j may be needed. Since
i is defined to be the gluon index, we have Sij 6= Sji and Sij ∈ C, so in general
the communication of a complex n × n matrix is required. As for the plain
colour correlated matrix elements, entries corresponding to non-coloured legs
or coloured legs for which the infrared singular limit does not involve spin
correlations (i.e. everything but gluons for all practical purposes) should be
ignored.

For a process flagged as AmplitudeType scTree the OLP should (through the
standard OLP EvalSubProcess2 method) return an array of length 2n2, such
that the elements at positions 2i + 2nj and 2i + 2nj + 1 (counting external
legs and elements in the array starting from zero) contain Re(Sij) and Im(Sij),
respectively.

17



A consistent setup of spin correlations in this way further requires the MC
code to obtain the gluon polarization vector εµ+(p, q) as used by the OLP,
given the gluon momentum p and a reference vector q. The gluon ploarisation
vectors can be passed via a dedicated function

OLP_Polvec(double* p, double* q, double* eps)

where p and q are arrays of size 4, denoting the momentum p of gluon i and
the corresponding reference vector, and eps is an array of size 8 containing

the four complex components of εµ±(p, q) = ± 1√
2

〈q∓|γµ|p∓〉
〈q∓|p±〉 , in a form where real

and imaginary parts are alternating.

Returning all possible colour and spin correlations could potentially become
a significant overhead; we leave it to the OLP code to support the calculation
of a single correlator. Information about the correlator to be returned could be
passed via the OLP SetParameter method right before the OLP EvalSubProcess2

call in question.

Obviously, if one of the contractors cannot provide the detailed colour or
helicity information requested, the calculation should exit at the stage of
OLP Start.

3.9 Restrictions such as diagram filters, exploitation of special symmetries,
etc.

The keyword ExcludedParticles in the order file can be used to remove
unwanted particles from the code generation. Restrictions like confining the
set of diagrams to resonant diagrams only can be set in the MC input card.
OLP specific restrictions can be imposed using the keyword Extra.

4 Conclusions

This writeup summarises the update of the standard interface between Monte
Carlo programs and one-loop matrix element providers which has been initi-
ated at the Les Houches 2009 workshop on Physics at TeV Colliders, called
the “Binoth Les Houches Accord (BLHA)”. The setup meanwhile has been
implemented by several groups and facilitates the automation of NLO calcu-
lations.

The experience gained meanwhile with the original setup fed into the discus-
sion about an extension of the standards, such that the interface can be used

18



in a wider and more flexible context. The outcome of the discussion between
a large number of Monte Carlo and One-Loop Providers (OLPs) is summa-
rized in the present document, which is intended to serve as a reference for
the new standards. This should increase the flexibility of both Monte Carlo
programs to import virtual corrections where available and of OLPs to team
up with different Monte Carlo programs. This is an important step forward, as
different MCs and OLPs have different focus and strengths concerning for ex-
ample the multiplicity of final states, particle masses, electroweak corrections,
BSM capability, etc. We therefore hope that BLHA version 2 will contribute
to the goal of extending the comparison of LHC data with theoretical results
consistently beyond the leading order.

Acknowledgements

We would like to thank the CERN TH/LPCC Institute on SM at the LHC
for hospitality and for providing a stimulating environment to discuss this
interface. We would also like to thank the Les Houches 2013 organizers for
providing a platform (e.g. Wikipages) and again a stimulating environment to
work out this Accord. GH would like to thank everybody who contributed to
the creation and implementation of the Accord, both BLHA1 and BLHA2.

A List of valid keywords for order/contract file

A.1 Required keywords

InterfaceVersion: can take the values BLHA1 or BLHA2. This clarifies already
in the pre-runtime phase if the new standards are supported by both MC
and OLP.

Model: SMdiag, SMnondiag, MSSM, ufo:/abs-path-to-ufo-file/. For BSM
standards, the UFO [18] format is most convenient.

CouplingPower QCD: integer which specifies the αS power of the Born cross
section. Can be used for sub-processes as well, where it also refers to cross
section rather than amplitude level.

CorrectionType: the type of higher order correction. Standard values are
QCD, QED, corresponding to expansions in αS, α.

IRregularisation: the infrared regularisation scheme used. Possible choices
for QCD are CDR, DRED.

19



A.2 Optional keywords

AccuracyTarget: The target accuracy the user would like to achieve. This is
a relative accuracy the OLP can use to decide if a rescue system should be
triggered if the result of internal stability checks returns a value which is
larger than AccuracyTarget.

DebugUnstable: can take the values True or False. Indicates that the un-
stable phase space points should be printed to a file for further diagnostics.
In order to decide what is classified as “unstable phase space point”, the
threshold given by AccuracyTarget or an internal OLP threshold can be
used.

CouplingPower QED: integer which specifies the α power of the Born cross
section. The default is zero. Can also be used for other couplings in the form
CouplingPower gX if the coupling gX is defined (for example through an UFO

module). Note that CouplingPower QCD needs to be defined explicitly, while
CouplingPower QED will be set to the default value (zero) if not specified.

AmplitudeType: the default is Loop. It can also take the values ccTree

(colour correlated tree), scTree (spin correlated tree), Tree, LoopInduced.
Tree without “cc” or “sc” implies CHsummed.

Extra: can be used to write special requirements relevant to the OLP into
the order file. If the MC generates the order file from a run card where such
requirements are specified, it will copy them into the order file but otherwise
ignore them.

ParameterCard: gives the path to the SLHA parameter card if the UFO model
setup is used.

MassiveParticles: defines a list of massive particles at the level of the order
file, for example MassiveParticles 5 6. The separator is a space. This
also implies that the light-quark masses are set to zero.

LightMassiveParticles: useful if mass regularisation instead of dimensional
regularisation is used (e.g. for electroweak corrections). It defines the set of
particles where only log(m) terms are kept, but not power suppressed ones.

ExcludedParticles: can be used to exclude particles which are contained by
default in Model. The particles should be listed after the keyword, denoted
by their PDG numbers, and separated by a space.

MassiveParticleScheme: a standard choice is OnShell.
SubdivideSubprocess: this flag defines whether a given process is repre-

sented in a split form to allow for multi-channel Monte Carlo sampling.
May be useful e.g. in the case of colour expansions. Can take the values
True or False (default).

EWScheme: used schemes (discussed in the text) can be flagged by the keywords
alpha0, alphaMZ, alphaGF, alphaRUN, alphaMSbar, OLPDefined (default).

WidthScheme: defines the treatment of unstable particles. Standard values are
ComplexMass, FixedWidth, RunningWidth, PoleApprox.

20



A.3 List of keywords contained in the original proposal which will be dis-
missed

MatrixElementSquareType: replaced by AmplitudeType, declared CHsummed

as default. Originally this flag was intended to specify colour (C) and he-
licity (H) treatment. Possible values were defined as CHsummed, Csummed,
Hsummed, NOTsummed.
The new default CHsummed also implies an average over initial state colours
and polarizations. The flag Extra can be used to accommodate for the key-
words HelAvgInitial, ColAvgInitial, MCSymmetrizeFinal, which can be
set to False if the factors included by default should be switched off.

ModelFile: the model file from which parameters have to be read. Keyword
replaced by Model.

OperationMode: the operating mode of the OLP. This optional flag was in-
tended to specify OLP-defined conventions or approximations to the one-
loop contribution. Typical operating modes are CouplingsStrippedOff,
LeadingColour, HighEnergyLimit. The keyword CouplingsStrippedOff

turned out to be ambiguous in the presence of EW couplings and therefore
will not be used any longer.

ResonanceTreatment: has been replaced by WidthScheme, as, for example,
the complex-mass scheme also affects non-resonant propagators.

B List of defined functions

We list here the definitions of the functions needed for a working interface in
the C/C++ version (with pointers in the argument list). A Fortran (2003)

module for binding with C/C++ can be found at
http://phystev.in2p3.fr/wiki/2013:groups:sm:blha:api.

21



#ifndef __OLP_H__

#define __OLP_H__

#ifdef __cplusplus

extern "C" {

#endif

void OLP_Start(char* fname, int* ierr);

void OLP_Info(char[15] olp_name,char[15] olp_version,char[255] message);

void OLP_SetParameter(char* para, double* re, double* im, int* ierr);

void OLP_PrintParameter(char* filename);

void OLP_Polvec(double* p, double* n, double* eps); // (optional)

void OLP_EvalSubProcess2(int* i,double* pp,double* mu,double* rval,double* acc);

#ifdef __cplusplus

}

#endif // __cplusplus

#endif // __OLP_H__

References

[1] T. Binoth, F. Boudjema, G. Dissertori, A. Lazopoulos, A. Denner, et al., A
Proposal for a standard interface between Monte Carlo tools and one-loop
programs, Comput.Phys.Commun. 181 (2010) 1612–1622, [1001.1307].

[2] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, et al., Event
generation with SHERPA 1.1, JHEP 0902 (2009) 007, [0811.4622].

[3] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO
calculations, Eur.Phys.J. C53 (2008) 501–523, [0709.2881].

[4] C. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, et al., Precise
Predictions for W + 3 Jet Production at Hadron Colliders, Phys.Rev.Lett.
102 (2009) 222001, [0902.2760].

[5] C. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, et al., Precise
Predictions for W + 4 Jet Production at the Large Hadron Collider,
Phys.Rev.Lett. 106 (2011) 092001, [1009.2338].

[6] H. Ita, Z. Bern, L. Dixon, F. Febres Cordero, D. Kosower, et al., Precise
Predictions for Z + 4 Jets at Hadron Colliders, Phys.Rev. D85 (2012) 031501,
[1108.2229].

[7] Z. Bern, G. Diana, L. Dixon, F. Febres Cordero, S. Hoeche, et al., Four-Jet
Production at the Large Hadron Collider at Next-to-Leading Order in QCD,
Phys.Rev.Lett. 109 (2012) 042001, [1112.3940].

22



[8] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, et al., Automated
One-Loop Calculations with GoSam, Eur.Phys.J. C72 (2012) 1889,
[1111.2034].

[9] S. Badger, B. Biedermann, P. Uwer, and V. Yundin, Numerical evaluation of
virtual corrections to multi-jet production in massless QCD,
Comput.Phys.Commun. 184 (2013) 1981–1998, [1209.0100].

[10] E. Re, NLO corrections merged with parton showers for Z+2 jets production
using the POWHEG method, JHEP 1210 (2012) 031, [1204.5433].

[11] Z. Bern, L. Dixon, F. Febres Cordero, S. Hoeche, H. Ita, et al.,
Next-to-Leading Order W + 5-Jet Production at the LHC, 1304.1253.

[12] R. Frederix, S. Frixione, F. Maltoni, and T. Stelzer, Automation of
next-to-leading order computations in QCD: The FKS subtraction, JHEP
0910 (2009) 003, [0908.4272].

[13] V. Hirschi, R. Frederix, S. Frixione, M. V. Garzelli, F. Maltoni, et al.,
Automation of one-loop QCD corrections, JHEP 1105 (2011) 044,
[1103.0621].

[14] R. Frederix, S. Frixione, K. Melnikov, and G. Zanderighi, NLO QCD
corrections to five-jet production at LEP and the extraction of αs(MZ), JHEP
1011 (2010) 050, [1008.5313].

[15] G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, Merging HW/HZ + 0
and 1 jet at NLO with no merging scale using the POWHEG BOX interfaced
to GoSam, 1306.2542.

[16] S. Hoeche, J. Huang, G. Luisoni, M. Schoenherr, and J. Winter, Zero and one
jet combined NLO analysis of the top quark forward-backward asymmetry,
1306.2703.

[17] Particle Data Group Collaboration, J. Beringer et al., Review of Particle
Physics (RPP), Phys.Rev. D86 (2012) 010001.

[18] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, et al., UFO -
The Universal FeynRules Output, Comput.Phys.Commun. 183 (2012)
1201–1214, [1108.2040].

[19] P. Z. Skands, B. Allanach, H. Baer, C. Balazs, G. Belanger, et al., SUSY Les
Houches accord: Interfacing SUSY spectrum calculators, decay packages, and
event generators, JHEP 0407 (2004) 036, [hep-ph/0311123].

[20] T. Hahn, SUSY Les Houches Accord 2 I/O made easy,
Comput.Phys.Commun. 180 (2009) 1681–1693, [hep-ph/0605049].

[21] B. Allanach, C. Balazs, G. Belanger, M. Bernhardt, F. Boudjema, et al., SUSY
Les Houches Accord 2, Comput.Phys.Commun. 180 (2009) 8–25, [0801.0045].

[22] S. Hoeche, F. Krauss, M. Schonherr, and F. Siegert, QCD matrix elements +
parton showers: The NLO case, JHEP 1304 (2013) 027, [1207.5030].

23



[23] T. Gehrmann, S. Hoche, F. Krauss, M. Schonherr, and F. Siegert, NLO QCD
matrix elements + parton showers in e+e− to hadrons, JHEP 1301 (2013)
144, [1207.5031].

[24] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP
1212 (2012) 061, [1209.6215].

[25] K. Hamilton, P. Nason, C. Oleari, and G. Zanderighi, Merging H/W/Z + 0
and 1 jet at NLO with no merging scale: a path to parton shower + NNLO
matching, JHEP 1305 (2013) 082, [1212.4504].

[26] S. Plätzer, Controlling inclusive cross sections in parton shower + matrix
element merging, 1211.5467.

[27] L. Lonnblad and S. Prestel, Merging Multi-leg NLO Matrix Elements with
Parton Showers, JHEP 1303 (2013) 166, [1211.7278].

[28] K. Hamilton, P. Nason, and G. Zanderighi, MINLO: Multi-Scale Improved
NLO, JHEP 1210 (2012) 155, [1206.3572].

[29] S. Catani and M. Seymour, A General algorithm for calculating jet
cross-sections in NLO QCD, Nucl.Phys. B485 (1997) 291–419,
[hep-ph/9605323].

24


