
Update of the Binoth Les Houches Accord for

a standard interface between Monte Carlo

tools and One-Loop Programs

xxx a, yyy b,

a

b

draft version 13 June 2013

Abstract

We present an update of the Binoth Les Houches Accord to standardise the interface
between Monte Carlo programs and codes providing one-loop matrix elements.

Key words: Monte Carlo tools, one-loop computations, Les Houches Accord,
automation

1 Introduction

The past years have seen an enormous progress in the development of programs
providing next-to-leading order corrections for multi-particle final states. This
is due to new developments concerning the calculation of one-loop amplitudes
as well as important progress on the Monte Carlo side to account for real
radiation at NLO. The modular structure of NLO calculations allows to share
the tasks between a “One-Loop Provider (OLP)”, providing the virtual cor-
rections, and a Monte Carlo program (MC) taking care of all the parts which
do not involve loops. To facilitate the cross-talk between those two engines,
a standard interface has been worked out during the workshop on Physics at
TeV Colliders at Les Houches in June 2009, called the “Binoth Les Houches
Accord (BLHA)” [?].

Meanwhile, the use of this interface [?,?,?,?,?] and further developments in
OLP and MC codes have brought up the necessity to extend it with further
options. The aim of this article is to provide a public document where an

Preprint submitted to Elsevier 13 June 2013

update of the BLHA is proposed and conventions are defined to pass parame-
ters, calculational schemes etc., and to return less inclusive information, such
as matrix elements which are not summed over all colours and helicities.

2 Existing features of the interface

We do not aim at an exhaustive description of the complete framework of the
interface here, referring to [?] for more details. However we sketch the main
features any extension will build upon.

A flowchart of the setup between user, Monte Carlo program and One Loop
Provider OLP is shown in Fig. ??.

Fig. 1. Figure will be replaced by a better one. Interplay between Monte Carlo
program and One Loop Provider (OLP). The user prepares an input card to define
the process, to be read by the MC. In the initialization phase of the interface, the
OLP “signs” an order file placed by the MC. At runtime, the Monte Carlo program
provides Born (B), real radiation part minus infrared subtraction terms (R-S) and
integrated subtraction terms (IS). The OLP provides the virtual amplitude for each
phase space point. The phase space integration is done by the Monte Carlo program.

The interaction between an OLP and a MC proceeds in two phases: the
initialisation phase and the run-time phase. In the initialisation phase,
the MC creates a file containing information about the setup and the subpro-
cesses it will need from the OLP to perform the computation. A subprocess
can be either a partonic subprocess or a component thereof (e.g. a specific
helicity amplitude or a colour partial amplitude). The particles are identified
by specifying their particle data group (PDG) code. This file is called order

file. An example for an order file for Z + 1 jet written by Sherpa, called
OLE order.lh, is shown in Fig. ??.

The OLP then reads the order file and checks availability for each item. Then
it returns a contract file telling the MC what it can provide. A contract
file generated by GoSam as a response to Sherpa’s contract file, looks like
the one in Fig. ??. From this file, one can already see where an upgrade of
the interface is clearly needed: As the original standard did not contain a
function which allows to pass parameters, the definition of masses and widths
is marked as “Ignored by OLP” in the contract file. Certainly the parameters
are passed in the actual calculation, but in a non-standardised way, as an
individual agreement between the particular MC and OLP. How to define a
standard for the passing of parameters is described in Section ??.

2

OLE_order.lh

Created by Sherpa-1.4.1

MatrixElementSquareType CHsummed

CorrectionType QCD

IRregularisation DRED

AlphasPower 1

AlphaPower 2

OperationMode CouplingsStrippedOff

Z_mass 91.118

Z_width 2.49

W_mass 80.419

W_width 2.0476

sin_th_2 0.221051079833

process list

1 -1 -> 11 -11 21

21 1 -> 11 -11 1

21 -1 -> 11 -11 -1

2 -2 -> 11 -11 21

21 2 -> 11 -11 2

21 -2 -> 11 -11 -2

Fig. 2. Example of an order file for the process Z+jet, created by Sherpa.

The first integer label after each subprocess specifies that this subprocess con-
tains only one component (if it was composed e.g. of several helicity configu-
rations to be evaluated separately, this first label would be an integer larger
than one). The second integer acts as a label for each subprocess, used at
runtime to call the individual subprocesses.

After the contract has been signed, the communication between MC and OLP
proceeds via function calls. At present, there are two functions which allow
the transfer of information between the two programs. One is the function
OLP Start(char*,&int) which should be called by the MC before starting
the runtime phase. The character string in the first argument contains the
name of the contract file. The integer in the second argument is set to 1 by
the function call if the contract file is accepted. In case of failure, the second
argument is different from one, and an error message of the type Error: can

not handle contract file should be issued.

The second function which is already in place, but will have a different argu-
ment list with the new standards, is the function OLP EvalSubProcess. The
parameters to be passed to the OLP EvalSubProcess function according to

3

vim: syntax=olp

#@OLP GOSAM 1.0

#@IgnoreUnknown True

#@IgnoreCase False

IRregularisation DRED | OK

AlphaPower 2 | OK

sin_th_2 0.221051079833 | OK # Ignored by OLP

Z_width 2.49 | OK # Ignored by OLP

Z_mass 91.118 | OK # Ignored by OLP

W_mass 80.419 | OK # Ignored by OLP

CorrectionType QCD | OK

AlphasPower 1 | OK

W_width 2.0476 | OK # Ignored by OLP

OperationMode CouplingsStrippedOff | OK

MatrixElementSquareType CHsummed | OK

1 -1 -> 11 -11 21 | 1 3

21 1 -> 11 -11 1 | 1 4

21 -1 -> 11 -11 -1 | 1 5

2 -2 -> 11 -11 21 | 1 0

21 2 -> 11 -11 2 | 1 1

21 -2 -> 11 -11 -2 | 1 2

Fig. 3. Example of a contract file for the process Z+jet, created by GoSam. As
the original interface did not define a function which allows to pass parameters, the
definition of masses and widths is marked as “Ignored by OLP” in the contract file.

the original version of the interface are (in this order):

• the integer label of the subprocess (as given in the contract file)
• an array containing the components of the momenta. The momenta are

placed in a one dimensional array, where physical scattering kinematics is
used, i.e. k1+k2 = k3+· · ·+km. For each particle, the kinematics is specified
by a 5-tuple: (Ej, k

x
j , k

y
j , k

z
j ,Mj). Thus a full m-particle event is specified by

an array of 5∗m double precision numbers filled with the m 5-tuples, ordered
by the particle labels.
• the renormalisation scale, µR, as a double precision number, or an array of

scales, if different scales need to be passed.
• the strong coupling αS(µR),where αS(µR) = 1 can be used to indicate that

the MC multiplies the returned values with the adequate coupling constants.
• the array where the computed results are returned.

The returned array is expected to contain at least four real-valued double
precision numbers

4

PoleCoeff2, PoleCoeff1, PoleCoeff0, BornSquare

which correspond to the colour- and helicity-summed (resp. averaged for the
initial state) terms A2, A1, A0, |Born|2.

3 New features of the interface

Concerning the initialisation phase: We define a number of new keywords to
allow for more options in the order/contract files. The valid keywords are listed
in Appendix ??.

There should be a check at the level of the order/contract files if all settings
are fully supported. As the new standards are not backwards compatible, we
propose to place the keyword InterfaceVersion, which can take the values
BLHA1 or BLHA2, in the order file.

Further, we define a new function
OLP Info(char[15] olp name, char[15] olp version, char[255] message)

to be called by the MC after OLP Start. The function serves to keep track
of the type and version of the OLP which has been used, and to encourage
proper citation. The arguments are the name of the OLP, the version, and a
string which contains information about the relevant publications, for example
the bibtex identifier.

At runtime, two new functions, OLP SetParameter and OLP PrintParameter,
described in more detail below, are defined.

The function OLP EvalSubProcess now has pointers in the argument list, and
also contains new arguments which are useful for the treatment of unstable
phase space points. With the new argument list, the function is not backwards
compatible with the original standard. Therefore, to avoid confusion with
different versions, the new function is called OLP EvalSubProcess2.

OLP EvalSubProcess2(const int* i, const double* pp, const double* mu, double* rval, int* status)

The arguments are

• const int* i: one element array with the label of the subprocess
• const double* pp: array of momenta, conventions (Ej, k

x
j , k

y
j , k

z
j ,Mj) un-

changed
• const double* mu: one element array with renormalisation scale
• double* rval: array of return values

5

• int* status: one element array denoting the status of the accuracy check.

Note: originally, the argument list of OLP EvalSubProcess contained both µr
and αs(µr): OLP EvalSubProcess(int j, double* pp, double* mu, double*

alphas, double* rval).
However, αs(µr) can now be set using the new function OLP SetParameter to
pass also dynamical parameters. This setup seems also more convenient for
mixed (e.g. QCD-EW) corrections or corrections where αs at different scales
should be used within the same calculation.

3.1 Passing parameters

In the first version of the interface, the standard only allowed to pass a fixed
amount of information at the level of the order/contract files. However, to be
able to pass also dynamical parameters like running masses, and to have more
flexibility in the definition of individual parameters, we suggest the following
extension.

Parameters can be passed by the function

OLP SetParameter(const char*,const &double,const &double,&int)

where the first argument is a string serving as a keyword for the parameter to
be set, followed by two double precision numbers so that complex parameters
can also be passed (in case of real parameters, the second double is zero). The
integer in the fourth argument is set by the OLP to tell the MC whether the
stetting of the parameter was successful.

int=1 means the parameter has been set successfully,
int=0 means failure: issue an error message and stop,
int=2 means that the parameter is unknown or the setting is ignored, but the
program should proceed.

The function OLP SetParameter can be called at runtime, for every phase
space point, if used to define a dynamic parameter. Obviously it can also be
called once (for each particular keyword/parameter that needs to be passed)
if this is a static parameter needed only at the start of the run-time phase.

An illustrative list of parameter names is given in Table ??.

Apart from setting individual parameters separately, there should also be the
possibility to define some global settings in the order file. For example, Model:

6

keyword parameter

mass(5) b quark mass

mass(6) top quark mass

width(6) top quark width

sw2 sin2 θw

vev SM vacuum expectation value

Gf GFermi

VV12 Vud
...

Table 1
List of keywords to define parameters to be passed by the function
OLP SetParameter.

SMdiag should set the CKM matrix to unity globally.

Further, we propose a routine OLP PrintParameter(const char* filename)

giving out a list of the actual (static) parameter settings used in the calcula-
tion, where filename is the name of the output file.

3.2 Treatment of unstable phase space points

At the level of the order file, a new keyword TreatUnstable can be used to
define globally how to deal with unstable phase space points. Possible values
can be

TreatUnstable discard, born, debug

When the run-time phase is started, the function OLP SetParameter(...)

can be used to have a flexible way to decide if a point is classified as unstable.
This can be done by a parameter specifying the precision threshold which
divides the points into “stable” or “unstable”, called Precision.

Precision 1e-4

The precision threshold, i.e. the dividing line between the classification as
“stable” or “unstable”, should be a relative accuracy determined as a result of
internal stability checks. The OLP should be free to use its preferred stability
criteria internally.

7

The function OLP EvalSubProcess can be used to pass information about
the quality of the phase space point. The last argument of this function is
an array of four real-valued double precision numbers, denoting PoleCoeff2,

PoleCoeff1, PoleCoeff0, BornSquare.

We propose to append, after this array, a single integer int encoding the
outcome of the stability test. The Monte Carlo program will then proceed
according to the flag set in TreatUnstable. int=1 means the point has passed
the stability test(s), int=0 means that the phase space point did not pass. If
int=0 and the TreatUnstable flag was discard, the point is thrown away,
while in the case of born, the value for the virtual part delivered by the OLP
could be set to zero, and the histogram would be filled with a point which is
approximately Born level. In the case of debug, the phase space point should be
printed to a file to allow further diagnostics (but not filled into the histogram).
The format of such a debug file should be defined internally within the OLP.

It could further be useful to pass more detailed information, e.g. how many
digits the OLP claims to be correct in the finite part of the virtual corrections,
as the relative accuracy required by Precision might not always have been
reached.

It was agreed to define a flag Extra for OLP specific parameters (not only for
the case of stability checks). An example from Njet [?] looks like

Extra NJetSwitchAcc [default = 1e-5]

Sets the relative accuracy at which higher precision floating point arithmetics
will be used to evaluate the phase space point if double precision has not
produced the desired accuracy.

3.3 Different powers of coupling constants, merging different jet multiplicities

So far, the interface was taylored to the combination of NLO calculations for
a fixed jet multiplicity with a parton shower, and focused on QCD corrections
rather than electroweak corrections.

However, mixed QCD-EW corrections, or expansions in parameters other than
αs or α, require a more flexible scheme to define the desired orders in coupling
constants.

Further, recent developments [?,?,?] propose a merging method for matched
NLO predictions with varying jet multiplicity. In order to calculate merged
samples, the Monte Carlo program needs to ask the OLP for one-loop matrix

8

elements with different jet multiplicities and therefore different powers of the
coupling constant.

These situations can be accounted for by allowing different settings for differ-
ent subprocesses. The global settings which by default hold for all subprocesses
are overwritten for particular subprocesses if different settings for those sub-
processes are explicitly specified.

Example:

AlphasPower 2

process list 2j

1 1 -> 1 1

1 -1 -> 1 -1

1 -1 -> 2 -2

1 -1 -> 21 21

21 21 -> 21 21

AlphasPower 3

Extra AmplitudeType LeadingColour

process list 3j

1 1 -> 21 1 1

1 -1 -> 21 1 -1

1 -1 -> 21 2 -2

1 -1 -> 21 21 21

21 21 -> 21 21 21

AlphasPower 4

Extra AmplitudeType Tree

process list 4j

21 21 -> 21 21 21 21

1 -1 -> 21 21 21 21

1 -1 -> -2 2 -2 2

1 -1 -> -1 1 -1 1

21 21 -> 21 21 21 21

Fig. 4. Example of the part of an order file containing different settings for different
sets of subprocesses.

This setup can be used for merged samples as well as mixed QCD/EW correc-
tions. It can also be used to pass additional information referring only to par-
ticular subprocesses, as indicated e.g. by Extra AmplitudeType LeadingColour.

9

3.4 Electroweak corrections

In the case of electroweak (EW) corrections, it is of particular importance
to check the consistency of the parameters, for example the relation be-
tween MZ ,MW and sin2 θw. This can be done in the following way: The
scheme is set in the order file by the keyword EWScheme, which can take
the values alphaGF (also known as Gµ-scheme), alpha0, alphaMZ, alphaRUN,
alphaMSbar, UserDefined. Then the parameters are set using
OLP SetParameter(const char*,const &double,const &double,&int).

The OLP imports these parameters. The integer in the last argument only
indicates if the import was successful or not. Consistency, according to the
EWScheme defined in the order file, can only be checked after all parameters
have been imported. Therefore, a second function was suggested to return
information about the consistency of the parameters. This could be done for
each parameter individually, by the function
OLP GetParameter(char*,&double,&double, &bool)

where char denotes the same keyword as in OLP SetParameter. After the OLP
has checked the dependencies, this function returns false in its last argument
if the parameters are found not to be consistent within a given EWScheme. If
the EW scheme is UserDefined, the fourth argument should by definition
always return true. If the last argument has been set to false by the OLP,
the program should stop.

The discussions in Les Houches lead to the following:
The EW scheme UserDefined, which leaves it to the OLP to ensure consis-
tency, is the most likely one to be actually used by the OLPs. This makes the
function OLP GetParameter obsolete.

Therefore the current agreement is to not introduce a function OLP GetParameter.

3.5 Loop induced processes

There should be a keyword in the order file defining the process as LoopInduced,
taking the values true or false. The default is false. The Monte Carlo pro-
gram should then adjust the phase space integration to take into account the
fact that a tree level matrix element does not exist.

10

3.6 Extras

The keyword Extra can be used to write special requirements relevant to the
OLP into the order file. Apart from writing them into the order file, the MC
will ignore them (unless they are known and relevant to the MC).

For example, requirements concerning a colour expansion could be put under
the Extra flag. The default is that amplitudes are summed over final state
colours and polarisations and averaged over initial state colours and polarisa-
tions. It should be possible to change this by

Extra HelAvgInitial no

Extra ColAvgInitial no

Extra MCSymmetrizeFinal no

where MCSymmetrizeFinal refers to the symmetry factor introduced for iden-
tical particles in the final state.

3.7 Polarisation and colour information

Going beyond the generic case of colour and helicity summed matrix elements
it seems almost impossible to satisfy special needs of different programs with
one global standard. The options below can be considered as suggestions how
to set up an interface, but the details probably remain to be implemented
individually between specific programs. If supported by the MC, special setups
can be communicated by the Extra flag.

Helicity
The main problem here is the question how to pass information about

the helicity basis used by the MC/OLP. For fermions (both massless and
massive), it is sufficient to specify the two light-like vectors which define
the light-cone decomposition. For massless vector bosons, the situation is
rather easy, specification of the reference vector is enough. For massive vec-
tor bosons, the situation is more tricky. The least ambiguous way seems to
be to specify polarisation vectors.

The consensus reached in the discussion allows for two options:
PolvecsAll: specify polarisation vectors for all particles
PolvecsMVB: specify polarisation vectors for (polarized) massive vector bosons
only, for the remaining particles specify reference vectors for helicity pro-
jection.

Colour
It would be very useful to be able to return partial amplitudes in a colour

11

decomposition, or coefficients of a colour correlation matrix. In this case the
colour basis has to be defined. The colour flow decomposition [?] seems to
be the most convenient.

In principle, a keyword to pass non-standard colour information was al-
ready in place in the original proposal: OperationMode was defined to allow
CHsummed, Csummed, Hsummed, NOTsummed, LeadingColour. However, how
to define and return the individual coefficients still remains to be worked out,
and Csummed, Hsummed, NOTsummed have been retired in favour of putting
such flags into Extra. Further, it is the responsibility of the user to make
sure that the approximations behind the keyword LeadingColour are the
same in the OLP and the MC program. Therefore, it was also suggested that
LeadingColour should be replaced by ColourExpansion, supplemented by
the power i in a 1/N i expansion.

Obviously, if one of the contractors cannot provide the detailed colour or
helicity information requested, the calculation should exit at the stage of
OLP Start.

3.8 Restrictions such as diagram filters, exploitation of special symmetries,
etc.

The keyword ExcludedParticles in the order file can be used to remove
unwanted particles from the code generation. Restrictions like confining the
set of diagrams to resonant diagrams only can be set in the MC input card.
The one-loop provider should make sure that all settings are coherent with
possible filters in the OLP program. It was found that anything more than
that is too error prone. However, OLP specific restrictions can be imposed
using the keyword Extra.

4 Conclusions

This writeup summarises the update of the standard interface between Monte
Carlo programs and one-loop matrix element providers which has been initi-
ated at the Les Houches 2009 workshop on Physics at TeV Colliders, called
the “Binoth Les Houches Accord (BLHA)”. The setup meanwhile has been
implemented by several groups and facilitates the automation of NLO calcu-
lations.

The experience gained meanwhile with the original setup fed into the discus-
sion about an extension of the standards, such that it can be used in a wider
and more flexible context. The outcome of the discussion between a large

12

number of Monte Carlo and one-loop providers is summarized in the present
document, which is intended to serve as a reference for the new standards.
This should increase the flexibility of both Monte Carlo programs to import
virtual corrections where available and of one-loop providers to team up with
different Monte Carlo programs. This is an imortant step forward, as different
MC’s and OLP’s have different focus and strengths concerning for example
the multiplicity of final states, particle masses, electroweak corrections, BSM
capability, etc. We therefore hope that BLHA version 2 will contribute to the
goal of having NLO as a standard for the comparison of LHC data to theory.

Acknowledgements

We would like to thank the CERN TH/LPCC Institute on SM at the LHC
for hospitality and for providing a stimulating environment to discuss these
matters. We would also like to thank the Les Houches 2013 organizers for
providing a platform (e.g. Wikipages) and again a stimulating environment to
work out this Accord.

A List of valid keywords for order/contract file

A.1 Required keywords

InterfaceVersion: Can take the values BLHA1 or BLHA2. This clarifies al-
ready in the initialisation phase if the new standards are supported by both
MC nad OLP.

Model: SMdiag, SMnondiag, MSSM.
For BSM standards, the UFO [?] format has been proposed.

AlphasPower: integer which specifies the αS power of the Born cross section.
(Can also be used for sub-processes, power refers to cross section rather
than amplitude level).

CorrectionType: the type of higher order correction should be specified.
Standard values are QCD (αS), EW (α).

IRregularisation: the infrared regularisation scheme used. Possible choices
for QCD are CDR, DRED.

TreatUnstable: defines how to treat unstable phase space points. Possible
values are discard, born, debug. If the function OLP EvalSubProcess2

returns int=0 (phase space point did not pass) as a result of OLP internal
stability checks, the MC will do the following:
discard: discard this phase space point
born: value for the virtual part is set to zero, histogram is filled with LO

value
debug: print the point to a file, do not fill it into histograms.

13

Precision: precision threshold which divides points into “stable” or “unsta-
ble”. Should be a relative accuracy, resulting from OLP internal stability
checks.

A.2 Optional keywords

AlphaPower: integer which specifies the α power of the Born cross section.
The default is zero.

MassiveParticles: defines a list of massive particles at the level of the order
file, for example MassiveParticles 5 6. The separator is a space. This also
implies that the light quark masses are set to zero.

LightMassiveParticles: useful if mass regularisation instead of dim.reg. is
used (EW), defines set of particles where only log(m) terms are kept, but
not O(m) terms

ExcludedParticles: can be used to exclude particles which are contained
by default in Model. The particles should be listed behind the keyword,
denoted by their PDG codes.

MassiveParticleScheme: a standard choice is OnShell.
AmplitudeType: could take the values LoopInduced, Tree, ColorCorrelated,

SpinCorrelated. The default is CHsummed.
Extra: This keyword can be used to write special requirements relevant to

the OLP into the order file. Apart from writing them into the order file, the
MC will ignore them (unless they are known and relevant to the MC).

SubdivideSubprocess: this flag tells the user if a given process is represented
in a split form to allow for multi-channel Monte Carlo sampling. May be
useful to return colour/spin correlated matrix elements.

EWScheme: used schemes (discussed in the text) can be flagged by the keywords
alpha0, alphaMZ, alphaGF, alphaRUN, alphaMSbar, UserDefined (default).

WidthScheme: defines the treatment of unstable particles. Standard values are
ComplexMass, FixedWidth, RunningWidth, PoleApprox.

PolvecsAll: specify polarisation vectors for all particles.
PolvecsMVB: specify polarisation vectors for (polarized) massive vector bosons

only, while for fermions specify reference vectors for light-cone decomposi-
tion.

A.3 List of keywords contained in the original proposal which probably will
be retired

MatrixElementSquareType: the type of the returned amplitude information.
This flag was intended to distinguish colour (C) and helicity (H) treatment.
Possible values were defined as CHsummed, Csummed, Hsummed, NOTsummed.
Replaced by AmplitudeType, declared CHsummed as default. CHsummed also
implies an average over initial state colours and polarizations. The flag

14

Extra could be used to accommodate for the keywords HelAvgInitial,
ColAvgInitial, MCSymmetrizeFinal, which can be set to false if the fac-
tors included by default should be switched off.

ModelFile: the model file from which parameters have to be read. Keyword
replaced by Model.

OperationMode: the operating mode of the OLP. This optional flag was in-
tended to specify OLP defined conventions or approximations to the one-
loop contribution, e.g. CouplingsStrippedOff, LeadingColour, HighEnergyLimit,
etc.

The keyword CouplingsStrippedOff turned out to be ambiguous in the
presence of EW couplings and therefore will not be used any longer.

ResonanceTreatment: has been replaced by WidthScheme, as, for example,
the complex mass scheme also concerns non-resonant propagators.

References

[1] T. Binoth, F. Boudjema, G. Dissertori, A. Lazopoulos, A. Denner, et al. A
Proposal for a standard interface between Monte Carlo tools and one-loop
programs. Comput.Phys.Commun., 181:1612–1622, 2010.

[2] C.F. Berger, Z. Bern, Lance J. Dixon, Fernando Febres Cordero, D. Forde,
et al. Precise Predictions for W + 3 Jet Production at Hadron Colliders.
Phys.Rev.Lett., 102:222001, 2009.

[3] Simon Badger, Benedikt Biedermann, Peter Uwer, and Valery Yundin.
Numerical evaluation of virtual corrections to multi-jet production in massless
QCD. Comput.Phys.Commun., 184:1981–1998, 2013.

[4] Gavin Cullen, Nicolas Greiner, Gudrun Heinrich, Gionata Luisoni, Pierpaolo
Mastrolia, et al. Automated One-Loop Calculations with GoSam. Eur.Phys.J.,
C72:1889, 2012.

[5] T. Gleisberg, Stefan. Hoeche, F. Krauss, M. Schonherr, S. Schumann, et al.
Event generation with SHERPA 1.1. JHEP, 0902:007, 2009.

[6] Tanju Gleisberg and Frank Krauss. Automating dipole subtraction for QCD
NLO calculations. Eur.Phys.J., C53:501–523, 2008.

[7] Stefan Hoeche, Frank Krauss, Marek Schonherr, and Frank Siegert. QCD matrix
elements + parton showers: The NLO case. JHEP, 1304:027, 2013.

[8] Thomas Gehrmann, Stefan Hoche, Frank Krauss, Marek Schonherr, and Frank
Siegert. NLO QCD matrix elements + parton showers in e+e− to hadrons.
JHEP, 1301:144, 2013.

[9] Vittorio Del Duca, Lance J. Dixon, and Fabio Maltoni. New color
decompositions for gauge amplitudes at tree and loop level. Nucl.Phys.,
B571:51–70, 2000.

15

[10] Celine Degrande, Claude Duhr, Benjamin Fuks, David Grellscheid,
Olivier Mattelaer, et al. UFO - The Universal FeynRules Output.
Comput.Phys.Commun., 183:1201–1214, 2012.

16

