
Rivet tutorial

Andy Buckley, Hendrik Hoeth

Les Houches 2013

1/30

Contents

1 Introduction
2 First Rivet runs
3 Writing a first analysis
4 Writing a data analysis

2/30

Introduction

3/30

The plan

We’re going to try a part work-along / part whistlestop tour.
Please ask questions as we go.

I Some background
I Setting up, and querying available analyses
I From PYTHIA to plots
I Writing and running an analysis

We’re demoing Rivet 2.0.0b2 here. New release series, not
quite stable. But much nicer, esp. for run merging and
NLO/weight vector possibilities cf. the Tools action list.

4/30

What is Rivet?
A generator-agnostic analysis/validation system for generators.
Co-developed with HepData & HepForge, co-evolved with FastJet, . . .

More straightforwardly: it’s a tool for making physics plots from
any generator that can produce events in the HepMC format.
All the “major” generators can do this one way or another: C++ Pythia 8,
Sherpa, Herwig++ out of the box, Fortran PYTHIA 6, HERWIG+JIMMY, etc.
via AGILe.

Designed (and redesigned. . .) with usability in mind: analysis
code should be able to be concise and clear.
Rivet’s become a de facto de facto standard for LHC analysis
archiving: many built-in data analyses.

Used for generator validation, archiving of (LHC) analysis
algorithms corresponding to measurement papers. + MC tuning,
model development, BSM studies, . . .

5/30

Design philosophy / pragmatics
Rivet operates on HepMC events. It intentionally doesn’t care
who made them.

Emphasis on not messing with the implementation details:
reconstruct resonances, avoid touching partons, etc. Most
analyses are eventually simpler and better-defined this way.

New analyses can be picked up at runtime: this is as simple and
pleasant as can make it!
Computations are automatically cached and histograms are
automatically synchronised with reference binnings.

Lots of standard analyses are built in, including key ones for
pQCD, EW and MPI model testing. Now over 250 built-in
analyses! Reference data is also included in the package.

Please write Rivet analyses of your analysis and contribute
them to the growing library!

6/30

Setup
Rivet docs: online at http://rivet.hepforge.org – PDF manual,
HTML list of existing analyses, and Doxygen.

Instructions:
1 Log in to the LH server: ssh 〈user〉@192.168.0.5
2 Source the setup script: source /opt/local/rivet/setup.sh

Test commands:
I rivet --help

I pythia --help

You should also be able to use
http://rivet.hepforge.org/hg/bootstrap/rawfile/tip/rivet-bootstrap but we have to
tweak this a little bit more for Rivet 2.0. Let us know if you want to get this
working e.g. on your laptop. A central version will be installed on AFS when
the final release is ready.

7/30

http://rivet.hepforge.org
http://rivet.hepforge.org/hg/bootstrap/rawfile/tip/rivet-bootstrap

First Rivet runs

8/30

Viewing available analyses

Rivet knows all sorts of details about its analyses:

I List available analyses:
rivet --list-analyses

I List ATLAS analyses:
rivet --list-analyses ATLAS_

I Show some pure-MC analyses’ full details:
rivet --show-analysis MC_

The PDF and HTML documentation is also built from this info,
so is always synchronised.

The analysis metadata is provided via the analysis API and usually read from
an .info file which accompanies the analysis.

9/30

Running a simple analysis (standalone)
To avoid huge files, we get the events from generator to Rivet by
writing to a filesystem pipe: mkfifo hepmc.fifo

You can also just use a file but it’ll be big.
NB. A FIFO/pipe has to live in a non-AFS directory. On lxplus: mkfifo
/tmp/$USER/hepmc.fifo

We’re going to use the Sacrifice frontend to run Pythia 8 for
demonstration – use the same or run any other generator that
you like with HepMC output going to the FIFO:
pythia -n 2000 -c HardQCD:all=on -o hepmc.fifo &

or agile-runmc Pythia6:426 --beams=LHC:8000 -n 2000 -o hepmc.fifo &

Now attach Rivet to the other end of the pipe:
rivet -a MC_GENERIC -a MC_JETS hepmc.fifo

Hopefully that worked. You can use multiple analyses at once,
change the output file, etc.: see rivet --help

10/30

http://agile.hepforge.org/svn/contrib/Sacrifice/

Feeding LHEF events into Rivet
If your code outputs LHEF events rather than HepMC, you can’t
use Rivet directly. Anyway, you’re taking a risk that it won’t
work since Rivet is final-state focused. . . but you can also get
hold of the raw event if you want and just use the
histogramming and event loop.

At the last Les Houches I made a mini filter program which will
convert LHEF files or streams to HepMC ones:
http://rivet.hepforge.org/hg/contrib/file/tip/lhef2hepmc/

Use it like this:
./lhef2hepmc lhef.fifo hepmc.fifo

or
./lhef2hepmc lhef.fifo - | rivet

Maybe some help will be needed with building this program –
it’s not an official part of Rivet so you have to download and
build it by hand. Let us know if you need a hand.

11/30

http://rivet.hepforge.org/hg/contrib/file/tip/lhef2hepmc/

Plotting
It’s still not ROOT. . . we have now replaced the AIDA
histograms with a new system called YODA
(http://yoda.hepforge.org)

We agonised over this, but in the end ROOT’s histos have too
many restrictions, e.g. bin widths not accounted for, bin gaps not
allowed, weights not handled without explicit enabling, etc.
YODA is designed from the ground up to be good at what we
need to do.

Plotting .yoda file is easy:
rivet-mkhtml Rivet.yoda

or, if you want complete control:
rivet-cmphistos Rivet.yoda

make-plots *.dat

Then view with a web browser/file browser/evince/gv/xpdf. . .
A --help option is available for all Rivet scripts.

12/30

http://yoda.hepforge.org

Running a data analysis
We’re going to use the ATLAS 7 TeV inclusive jet analysis:
rivet --show-analysis ATLAS_2012_I1082936

Note that tab completion should work on rivet options and
analysis names.

Now to run it:
pythia -n 20000 -c HardQCD:all=on -c

PhaseSpace:pTHatMin=20 -o hepmc.fifo &

rivet -a ATLAS_2012_I1082936 hepmc.fifo

See the Py8 manual: http://home.thep.lu.se/~torbjorn/pythia81html/Welcome.html

And plot, much as before:
rivet-mkhtml Rivet.yoda:Pythia8

or
rivet-cmphistos Rivet.yoda:Pythia8

make-plots --pdfpng ATLAS*.dat

13/30

http://home.thep.lu.se/~torbjorn/pythia81html/Welcome.html

Writing a first analysis

14/30

Writing an analysis
Writing an analysis is of course more involved than just running
rivet! However, the C++ interface is intended to be friendly:
most analyses are quite short and simple because the bulk of
computation is in the library.

An example is usually the best instruction: take a look at the
MC_GENERIC analysis via
http://rivet.hepforge.org/hg/rivet/file/tip/src/Analyses/MC_GENERIC.cc)

Things to note:

I Analyses are classes and inherit from Rivet::Analysis

I Usual init/execute/finalize-type event loop structure
(certainly familiar from experimental frameworks)

I Weird projection things in init and analyze

I Mostly normal-looking everything else

15/30

http://rivet.hepforge.org/hg/rivet/file/tip/src/Analyses/MC_GENERIC.cc

Projections – registration

Major idea: projections. They are just observable calculators:
given an Event object, they project out physical observables.

They also automatically cache themselves, to avoid
recomputation. This leads to slightly unfamiliar calling code.

They are registered with a name in the init method:

void init() {
...
const SomeProjection sp(foo, bar);
addProjection(sp, "MySP");
...

}

16/30

Projections – applying
Projections were registered with a name. . . they are then applied
to the current event, also by name:

void analyze(const Event& evt) {
...
const SomeProjectionBase& mysp =
applyProjection<SomeProjectionBase>(evt, "MySP");

mysp.foo()
...

}

We prefer to get a handle to the applied projection as a const reference
to avoid unnecessary copying.

It can then be queried about the things it has computed.
Projections have different abilities and interfaces: check the
Doxygen on the Rivet website, e.g.
http://projects.hepforge.org/rivet/code/dev/hierarchy.html

17/30

http://projects.hepforge.org/rivet/code/dev/hierarchy.html

Final state projections
Rivet is mildly obsessive about only calculating things from final
state objects. Accordingly, a very important set of projections is
those used to extract final state particles: these all inherit from
FinalState.

I The FinalState projection finds all final state particles in a
given η range, with a given pT cutoff.

I Subclasses ChargedFinalState and NeutralFinalState have
the predictable effect!

I IdentifiedFinalState can be used to find particular
particle species.

I VetoedFinalState finds particles other than specified.
I VisibleFinalState excludes invisible particles like

neutrinos, LSP, etc.

Most FSPs can take another FSP as a constructor argument and
augment it. In the near future FSPs should be able to take arbitrary
combinations of kinematic cuts as a single argument. 18/30

Using FSPs to get final state particles

void analyze(const Event& evt) {
...
const FinalState& cfs =
applyProjection<FinalState>(evt, "ChFS");

MSG_INFO("Total charged mult. = " << cfs.size());
foreach (const Particle& p, cfs.particles()) {
const double eta = p.momentum().eta();
MSG_DEBUG("Particle eta = " << eta);

}
...

}

Note the nice foreach macro from boost.org. We like the “make simple things
simple” philosophy. Please use foreach when appropriate in any code that
you contribute to Rivet. In future we may permit (and prefer) the C++ 11
range-for loop.

19/30

Physics vectors

Rivet uses its own physics vectors rather than CLHEP. They are
a little nicer to use, but basically familiar. As usual, check
Doxygen: http://projects.hepforge.org/rivet/code/dev/

Particle and Jet both have a momentum() method which returns
a FourMomentum.

Some FourMomentum methods: eta(), pT(), phi(), rapidity(),
E(), px() etc., mass(). Hopefully intuitive!

20/30

http://projects.hepforge.org/rivet/code/dev/

Histogramming
YODA has Histo1D and Profile1D histograms, which behave as
you would expect. See http://yoda.hepforge.org/doxy/hierarchy.html

Histos are booked via helper methods on the Analysis base
class, which deal with path issues and some other abstractions∗:
e.g. bookHisto1D("thisname", 50, 0, 100)

Histo binnings can also be booked via a vector of bin edges or
autobooked from a reference histogram.

The histograms have the usual fill(value, weight) method for
use in the analyze method. There are scale(), normalize() and
integrate() methods for use in finalize().

The fill weight is important! For kinematic enhancements,
systematics, counter-events, etc.Use evt.weight().

∗ The abstractions are key to handling systematics weight vectors, correlated
counter-events, completely general run merging, etc.

21/30

http://yoda.hepforge.org/doxy/hierarchy.html

A first analysis

Let’s start with a simple “particle analysis”, just plotting some
simple particle properties like η, pT, φ, etc. Then we’ll try jets or
W/Z.

To get an analysis template, which you can fill in with an FS
projection and a particle loop, run e.g. rivet-mkanalysis
MY_TEST_ANALYSIS – this will make the required files.

Once you’ve filled it in, you can either compile directly with g++,
using the rivet-config script as a compile flag helper, or run
rivet-buildplugin MY_TEST_ANALYSIS.cc

To run, first export RIVET_ANALYSIS_PATH=$PWD, then run rivet

as before. . . or add the --pwd option to the rivet command line.

22/30

Jets (1)

There are many more projections, but one more important set
which we’d like to dwell on is those to construct jets. JetAlg is
the main projection interface for doing this, but almost all jets
are actually constructed with FastJet, via the explicit FastJets
projection.

The FastJets constructor defines the input particles (via a
FinalState), as well as the jet algorithm and its parameters:

const FinalState fs(-3.2, 3.2);
addProjection(fs, "FS");
FastJets fj(fs, FastJets::ANTIKT, 0.6);
fj.useInvisibles();
addProjection(fj, "Jets");

Remember to #include "Rivet/Projections/FastJets.hh"

23/30

Jets (2)

Then get the jets from the jet projection, and loop over them in
decreasing pT order:

const Jets jets =
applyProjection<JetAlg>(evt, "Jets").jetsByPt(20*GeV);

foreach (const Jet& j, jets) {
foreach (const Particle& p, j.particles()) {
const double dr =
deltaR(j.momentum(), p.momentum());

}
}

Check out the Rivet/Math/MathUtils.hh header for more handy
functions like deltaR.

24/30

Jets (3)
For substructure analysis Rivet doesn’t provide extra tools: best
just to use FastJet directly

const PseudoJets psjets = fj.pseudoJets();
const ClusterSequence* cseq = fj.clusterSeq();

Selector sel_3hardest = SelectorNHardest(3);
Filter filter(0.3, sel_3hardest);
foreach (const PseudoJet& pjet, psjets) {
PseudoJet fjet = filter(pjet);
...

}

Note: if using FastJet3 tools, you’ll need to add lifastjettools

to the rivet-buildplugin command line. And a -L/path/to/ arg
as well, until the next release. Just compilation, no magic.

Improvements and suggestions more than welcome! We’re
reviewing this historical design.

25/30

Writing a data analysis

26/30

Starting a data analysis
We’ll use the ATLAS 2010 W+jets analysis as an example. Feel
free to implement something else: we’ll try to troubleshoot.

The SPIRES key for this ATLAS analysis is 8919674 (try “key
8919674” in the SPIRES search box) and it was published in 2010,
so in the standard Rivet naming convention it is called
ATLAS_2010_S8919674.

There is reference data for this analysis in HepData: running
rivet --show-analysis ATLAS_2010_S8919674 supplies this
URL: http://hepdata.cedar.ac.uk/view/irn8919674

rivet-mkanalysis ATLAS_2010_S8919674 will download this ref
data. NB. the jet multiplicity plots are not output correctly: HepData needs
some improvements! Check the .info and .yoda files: use yoda2flat

ATLAS_2010_S8919674.yoda | less

The histogram names in this data file can be used for histogram
autobooking. 27/30

http://hepdata.cedar.ac.uk/view/irn8919674

Histogram autobooking
The final framework feature to introduce is histogram
autobooking. This is a means for getting your Rivet histograms
binned with the same bin edges as used in the experimental data
that you’ll be comparing to.

To use autobooking, just call the booking helper function with
only the histogram name (check that this matches the name in
the reference .yoda file), e.g.
_hist1 = bookHisto1D("d01-x01-y01")

The “d”, “x” and “y” terms are the indices of the HepData dataset, x-axis, and
y-axis for this histogram in this paper.

A neater form of the helper function is available and should be
used for histogram names in this format:
_hist1 = bookHisto1D(1, 1, 1)

That’s it! If you need to get the binnings without booking a
persistent histogram use refData(name) or refData(d,x,y).

28/30

UnstableFinalState
The UnstableFinalState projection fetches
decayed-but-physical particles (mostly hadrons) from the event
record. The HepMC standard declares how these are to be
indicated, so the results are reliable and physically safe:

const UnstableFinalState ufs(2.5, 6.0);
addProjection(ufs, "UFS");
...
const FinalState& ufs =
applyProjection<FinalState>(evt, "UFS");

foreach (const Particle& p, j.particles()) {
const int pid = p.pdgId();
if (PID::hasBottom(pid)) num_b += 1;
...

}

HepPDT-type functions are defined in the PID namespace in the
Rivet/Tools/ParticleIdUtils.hh.

29/30

THE END

30/30

	Introduction
	First Rivet runs
	Writing a first analysis
	Writing a data analysis

