Electroweak corrections to parton distributions Preliminary results using the NNPDF methodology

Stefano Carrazza

University & INFN Milan

DIS2013, April 24

results presented on behalf of the NNPDF collaboration

Outline

- PDF evolution
 - Solution & Benchmark
- Observables
 - How do the observables change by fixing PDFs?
- Extracting PDFs from real data
 - How do the PDFs change by fixing observables?
- 5 Photon PDF from DIS fit
- Reweighting the photon PDF with LHC data

Outline

6 Reweighting the photon PDF with LHC data

Why electroweak corrections?

A naïve argument:

The QED coupling α can affects processes in which QCD DGLAP is computed at **NLO** and higher orders

$$\frac{\mathcal{O}(\alpha_s^2)}{\mathcal{O}(\alpha)} \rightarrow \frac{\alpha_s^2(M_Z^2)}{\alpha(M_Z^2)} = \frac{0.1184^2}{1/127} \sim 1.78$$

• Leading order QED effects are comparable to NLO QCD corrections.

Why electroweak corrections?

A naïve argument:

The QED coupling α can affects processes in which QCD DGLAP is computed at NLO and higher orders

$$\frac{\mathcal{O}(\alpha_s^2)}{\mathcal{O}(\alpha)} \rightarrow \frac{\alpha_s^2(M_Z^2)}{\alpha(M_Z^2)} = \frac{0.1184^2}{1/127} \sim 1.78$$

Leading order QED effects are comparable to NLO QCD corrections.

Main motivations:

- Provide a first unbiased determination of the photon PDF with faithful uncertainty.
- Assessment of their impact on theoretical predictions:
 - ★ EW measurements at the LHC.
 - * High-mass Drell-Yan and related searches, m_W determination, etc...
- MRST2004QED is available but old and based on model assumptions.

Technical aspects of QED corrections

Step by step: How to obtain the photon PDF.

• In order to achieve our goal we had to implement:

Points (3) and (4) were completely written and optimized from scratch.

Outline

PDF evolutionSolution & Benchmark

3 Observables

• How do the observables change by fixing PDFs?

4) Extracting PDFs from real data

- How do the PDFs change by fixing observables?
- 5 Photon PDF from DIS fit
- 6 Reweighting the photon PDF with LHC data

Solving the coupled evolution

- $\gamma(x, Q^2)$: photon PDF
 - LO QED evolution equations:

$$\begin{aligned} Q^{2} \frac{\partial}{\partial Q^{2}} \gamma(x, Q^{2}) &= \frac{\alpha(Q^{2})}{2\pi} \left[P_{\gamma\gamma}(\xi) \otimes e_{\Sigma}^{2} \gamma\left(\frac{x}{\xi}, Q^{2}\right) + P_{\gamma q}(\xi) \otimes \sum_{j} e_{j}^{2} q_{j}\left(\frac{x}{\xi}, Q^{2}\right) \right] \\ Q^{2} \frac{\partial}{\partial Q^{2}} q_{i}(x, Q^{2}) &= \frac{\alpha(Q^{2})}{2\pi} \left[P_{q\gamma}(\xi) \otimes e_{i}^{2} \gamma\left(\frac{x}{\xi}, Q^{2}\right) + P_{qq}(\xi) \otimes e_{i}^{2} q_{i}\left(\frac{x}{\xi}, Q^{2}\right) \right] \end{aligned}$$

with $e_{\Sigma}^2 = \sum_{f}^{n_f} N_c^f e_{q_f}^2$ (charges), and the momentum sum rule becomes

$$\int_0^1 dx x \left\{ \sum_i q_i(x, Q^2) + g(x, Q^2) + \gamma(x, Q^2) \right\} = 1$$

Multiple methods to solve QCD+QED evolution:

• in a special evolution basis, e.g. in Mellin space:

$$Q^{2}\frac{\partial}{\partial Q^{2}}\underline{f}(N,Q^{2}) = P(N) \cdot \underline{f}(N,Q^{2})$$

where P(N) is the splitting function matrix in N space

$$\begin{split} \mathcal{P}(\mathcal{N}) &= \alpha_{s}(\mathcal{Q}^{2})\mathcal{P}_{\text{LO}}^{\text{QCD}} + \alpha_{s}^{2}(\mathcal{Q}^{2})\mathcal{P}_{\text{NLO}}^{\text{QCD}} + \alpha(\mathcal{Q}^{2})\mathcal{P}_{\text{LO}}^{\text{QED}} + \\ &+ \mathcal{O}(\alpha\alpha_{s}) + \mathcal{O}(\alpha_{s}^{3}) + \mathcal{O}(\alpha^{2}) \end{split}$$

e.g. Roth, Weinzierl (hep-ph/0403200)

Multiple methods to solve QCD+QED evolution:

• in a special evolution basis, e.g. in Mellin space:

$$Q^{2}\frac{\partial}{\partial Q^{2}}\underline{f}(N,Q^{2})=P(N)\cdot\underline{f}(N,Q^{2})$$

where P(N) is the splitting function matrix in N space

$$P(N) = \alpha_s(Q^2) P_{\text{LO}}^{\text{QCD}} + \alpha_s^2(Q^2) P_{\text{NLO}}^{\text{QCD}} + \alpha(Q^2) P_{\text{LO}}^{\text{QED}} + + \mathcal{O}(\alpha \alpha_s) + \mathcal{O}(\alpha_s^3) + \mathcal{O}(\alpha^2)$$

e.g. Roth, Weinzierl (hep-ph/0403200)

• our method: combination of QCD and QED evolution solutions $f_i(N, Q^2) = \Gamma_{ik}^{\text{QCD}}(Q^2, Q_0^2) \cdot \Gamma_{kj}^{\text{QED}}(Q^2, Q_0^2) \cdot f_j(N, Q_0^2)$

- Both methods treat the subleading terms in different ways.
- FastKernel implementation of DGLAP evolution.

Stefano Carrazza (Unimi)

Current PDF evolution (DGLAP)

- Our DGLAP properties: possibility to switch between fixed and variable flavor number schemes (FFNS/VFNS), running α(Q²).
- Fast Kernel implementation in x-space, building the interpolation grid.

$$xN_{j}(x;\mu^{2},\nu^{2}) = \sum_{k=1}^{N_{pdf}} \sum_{\alpha=1}^{N_{x}} \Gamma_{jk}^{QCD}(x,x_{\alpha}|\mu^{2},\mu_{0}^{2}) \left[x_{\alpha}N_{k}(x_{\alpha};\mu_{0}^{2},\nu^{2}) \right],$$

$$x_{\alpha}N_{k}(x_{\alpha};\mu_{0}^{2},\nu^{2}) = \sum_{l=1}^{\mu}\sum_{\beta=1}^{N_{x}}\Gamma_{kl}^{\text{QED}}(x_{\alpha},x_{\beta}|\nu^{2},\nu_{0}^{2})\left[x_{\beta}N_{l}(x_{\beta};\mu_{0}^{2},\nu_{0}^{2})\right],$$

combining both kernels and setting $\mu = \nu = Q$ we obtain the final expression

$$xN_{j}(x; Q^{2}) = \sum_{l=1}^{N_{pdf}} \sum_{\beta=1}^{N_{x}} \underbrace{\Gamma_{jl}^{\text{QCD-QED}}(x, x_{\beta} | Q^{2}, Q_{0}^{2})}_{\text{Fast Kernel}} \left[\underbrace{x_{\beta}N_{l}(x_{\beta}; Q_{0}^{2})}_{\text{Input PDF}} \right]$$

where $\Gamma_{jl}^{\text{QCD}\cdot\text{QED}}(x, x_{\beta} | \boldsymbol{Q}^2, \boldsymbol{Q}_0^2) = \sum_{k=1}^{N_{pdf}} \sum_{\alpha=1}^{N_x} \Gamma_{jk}^{\text{QCD}}(x, x_{\alpha} | \boldsymbol{Q}^2, \boldsymbol{Q}_0^2) \Gamma_{kl}^{\text{QED}}(x_{\alpha}, x_{\beta} | \boldsymbol{Q}^2, \boldsymbol{Q}_0^2)$

Impact of QED corrections to evolution

• Input PDF \rightarrow Les Houches toy PDF +

$$\rightarrow x\gamma(x, Q_0^2 = 2\,\mathrm{GeV}^2) = 0$$

• Relative difference due to QED corrections at $Q^2 = 10, 10^2, 10^3 \text{ GeV}^2$:

$$\delta f(x, Q^2) = \frac{f_{\text{with QED}}(x, Q^2) - f_{\text{QCD only}}(x, Q^2)}{f_{\text{with QED}}(x, Q^2)}$$

• Singlet and Gluon PDFs

Impact of QED corrections to evolution

• Also for the photon PDF!

... obtained **dynamically**. $\gamma(x, Q^2)$ is minimally affected by the evolution.

Impact of QED corrections to evolution

• Finally, in the evolution basis:

Comparison with other codes

Benchmarking the QCD+QED evolution code

- Good agreement with Weinzierl 1.1.3 code¹:
 - relative differences of the same order of magnitude
 - differences due to different solution methodology
 - ★ different subleading terms
- Here some examples for the $\Sigma(x, Q^2)$ and $u(x, Q^2)$ PDFs:

Stefano Carrazza (Unimi)

Outline

Why electroweak corrections?

PDF evolutionSolution & Benchmark

ObservablesHow do the observables change by fixing PDFs?

Extracting PDFs from real data
 How do the PDFs change by fixing observables?

5 Photon PDF from DIS fit

6 Reweighting the photon PDF with LHC data

Observables, current state of the art

- Observables including photon contribution due to evolution:
 - ► 2767 DIS data points: e.g. $F_2^{\gamma, p}$, $F_2^{\gamma, d}$, Dimuon CC cross-section

• Assume no isospin symmetry breaking at initial scale

 $T_3^p(x, Q_0^2) = -T_3^n(x, Q_0^2), \quad V_3^p(x, Q_0^2) = -V_3^n(x, Q_0^2)$

• Isospin is **broken dynamically** by DGLAP evolution.

Observables, current state of the art

- Observables are codified in Fast Kernel grids
 - measure the impact on DIS data using NNPDF2.3 NLO
 - set $\gamma(x, Q_0^2) = 0$
- General behavior very similar to PDFs comparison:
 - relative differences around -1% for $x \to 1$

Outline

- PDF evolutionSolution & Benchmark
 - Observables
 How do the observables change by fixing PDFs?
- Extracting PDFs from real data
 - How do the PDFs change by fixing observables?
- 5 Photon PDF from DIS fit
- 6 Reweighting the photon PDF with LHC data

Fitting algorithm overview

• Fit mechanism also includes momentum sum rule and positivity.

Outline

- PDF evolution
 Solution & Benchmark
 - Observables
 How do the observables change by fixing PDFs?
- Extracting PDFs from real data
 How do the PDFs change by fixing observables?
- 5 Photon PDF from DIS fit
- Reweighting the photon PDF with LHC data

- Performing a preliminary DIS fit we obtain
 - the photon PDF extracted from data (no toy model)
- Photon from DIS is compatible with zero with large uncertainty.
 - Z production is a good indicator

- Photon PDF: impact on Z production
 - HORACE: Monte Carlo event generator for Drell-Yan processes including the exact 1-loop electroweak radiative corrections (O(α))
 - Example: $pp @ \sqrt{s} = 14 \text{ TeV}$ with $|\eta'| \le 2.5$, $p_T' \ge 20 \text{ GeV}$

- Photon PDF: impact on Z production
 - HORACE: Monte Carlo event generator for Drell-Yan processes including the exact 1-loop electroweak radiative corrections (O(α))
 - Example: $pp @ \sqrt{s} = 14$ TeV with $|\eta^{l}| \le 2.5$, $p_{T}^{l} \ge 20$ GeV
- Born diagrams (from arXiv:0710.1722):

• Photon-induced NLO-EW process diagrams:

• **Example:** $Z \rightarrow l^+ l^-$ invariant mass

 $Z \rightarrow \mu^+ \mu^-$ invariant mass distribution

Effect of photon PDF from DIS data

- moderate in the region of the peak
- rapidly increases away from the peak
- Potentially huge contribution due to lack of constraints from DIS on small-*x*
 - ruins predictions for high m_Z/p_T^l !
- Next step: use W/Z production data to constraint photon PDF → use for e.g.
 - predictions for jets & Z' production

Outline

- PDF evolutionSolution & Benchmark
 - Observables
 How do the observables change by fixing PDFs?
 - Extracting PDFs from real data
 How do the PDFs change by fixing observables?
- 5 Photon PDF from DIS fit
- Reweighting the photon PDF with LHC data

- Goal: inclusion of LHC Drell-Yan data to constrain the photon PDF.
 - ► ATLAS W/Z rapidity (2010) ⇒ small-x constraint
 - ► ATLAS DY high mass (2011) ⇒ central-x constraint

- Goal: inclusion of LHC Drell-Yan data to constrain the photon PDF.
 - ► ATLAS W/Z rapidity (2010) ⇒ small-x constraint
 - ► ATLAS DY high mass (2011) ⇒ central-x constraint

Reweighting, step by step (briefly):

- Produce N photon replicas from a DIS fit
 - using MSR, dynamical stopping, positivity
- 2 Build a NNPDF2.3 NLO + photon DIS set @ $Q^2 = 2 \text{ GeV}^2$
 - recomputing evolution with QED corrections
 - Reweight the obtained new set with ATLAS data
 - 43 data points: $d\sigma/d|y_Z|$ (8), $d\sigma/d|\eta_I|$ (22) and $d\sigma/dm_{ee}$ (13)

Reweighting with ATLAS W/Z data (preliminary) Impact of ATLAS W/Z data

- Input: QED DIS fit with N = 500 photon replicas.
- For each replica, compute predictions using
 - APPLgrid for the QCD NLO.
 - ► HORACE for the photon induced (LO and NLO) contribution.
- Compute the weight of replica k (details arXiv:1108.1758)

$$W_k \propto \chi_k^{n-1} e^{-rac{1}{2}\chi_k^2}$$

Reweighting with ATLAS W/Z data (preliminary)

 Z → I⁺I[−] channel is more sensitive to the photon PDF:

• due to
$$\gamma\gamma \rightarrow I^+I^-$$

20 / 27

Reweighting with ATLAS W/Z data (preliminary) Adding ATLAS W/Z data

- The weighted photon PDF is constrained by the ATLAS W/Z data
 - Uncertainties are smaller at small-x
- From the initial N = 500 we obtain $N_{eff} = 345$.
- The photon PDF after unweighting (ATLAS W/Z data):

Stefano Carrazza (Unimi)

Reweighting with ATLAS DY high mass data (prel.)

For each replica, compute with:

- DYNNLO for the QCD NLO.
- HORACE for the photon induced contribution.

•
$$N = 500 \rightarrow N_{eff} = 300$$

Stefano Carrazza (Unimi)

Electroweak corrections to parton distributions

Weight Histogram

ATLAS DY high mas

-0.1195±0.2580

Reweighting with ATLAS DY high mass data (prel.) Adding ATLAS DY high mass data

- Uncertainties are reduced at central/large-x
- The photon PDF after unweighting (ATLAS DY high mass data):

Reweighting with ATLAS DY high mass data (prel.) Adding ATLAS DY high mass data

- Uncertainties are reduced at central/large-x
- The photon PDF after unweighting (ATLAS DY high mass data):

Next Step:

Combine both datasets in a single reweigthing procedure.

Stefano Carrazza (Unimi)

Electroweak corrections to parton distributions

Combined Reweighting (preliminary)

ATLAS W/Z + DY high mass data

- Full reweighting with 43 data points:
 - From $N = 500 \rightarrow N_{eff} = 280$
 - χ² from 2.550 to 1.012

Stefano Carrazza (Unimi)

Electroweak corrections to parton distributions

Final photon PDF (preliminary)

- Final unweighted photon PDF
 - constrained at small and central/large-x.
 - achieved good precision for LHC predictions.

Studying predictions for BSM

Impact on new physics searches

- Simple example test with HORACE:
 - ▶ 10M events, $p_T' > 25 \text{ GeV}$, $|\eta| < 2.4$, $O(\alpha)$ + photon induced

Photon PDF can improve/change limits for BSM models.

Stefano Carrazza (Unimi)

Electroweak corrections to parton distributions

Outlook

Conclusion

- Extraction of a preliminary photon PDF from DIS data
- Study the impact of a DIS photon PDF to Z production
 - * Problem: too large uncertainties for LHC physics
 - $\star\,$ Solution: reweighting with ATLAS W/Z and DY high mass data
- Unweighting the obtained PDF set.
- Outlook
 - Build a NNLO QCD + LO QED fit, using the same methodology.

Release

► Release a set with QED corrections in the next LHAPDF release.

27/27

• For the benchmark we have used hep-ph/0204316

$$\begin{aligned} xu_{\nu}(x,Q_{0}^{2}) &= 5.10720 \cdot x^{0.8}(1-x)^{3} \\ xd_{\nu}(x,Q_{0}^{2}) &= 3.06432 \cdot x^{0.8}(1-x)^{4} \\ xg(x,Q_{0}^{2}) &= 1.70000 \cdot x^{-0.1}(1-x)^{5} \\ x\bar{d}(x,Q_{0}^{2}) &= .1939875 \cdot x^{-0.1}(1-x)^{6} \\ x\bar{u}(x,Q_{0}^{2}) &= (1-x)x\bar{d}(x,Q_{0}^{2}) \\ xs(x,Q_{0}^{2}) &= x\bar{s}(x,Q_{0}^{2}) &= 0.2 \cdot x(\bar{u}+\bar{d})(x,Q_{0}^{2}) \end{aligned}$$

Photon PDF (preliminary)

Distances between a pure QCD NLO DIS fit and the respective QED corrected fit.

NNPDF Fit vs Reference Distances

Stefano Carrazza (Unimi)

Electroweak corrections to parton distributions

Multiple methods to solve QCD+QED evolution:

• (1) in a special evolution basis, e.g. in Mellin space:

$$Q^{2} \frac{\partial}{\partial Q^{2}} \underline{f}(N, Q^{2}) = P(N) \cdot \underline{f}(N, Q^{2})$$

where P(N) is the splitting function matrix in N space

$$P(N) = \alpha_s(Q^2)P_{\text{LO}}^{\text{QCD}} + \alpha_s^2(Q^2)P_{\text{NLO}}^{\text{QCD}} + \alpha(Q^2)P_{\text{LO}}^{\text{QED}} + \mathcal{O}(\alpha\alpha_s) + \cdots$$

e.g. Roth, Weinzierl (hep-ph/0403200)

• (2) our method: combination of QCD and QED evolution solutions

 $f_i(N, Q^2) = \Gamma_{ik}^{\text{QCD}}(Q^2, Q_0^2) \cdot \Gamma_{kj}^{\text{QED}}(Q^2, Q_0^2) \cdot f_j(N, Q_0^2)$

Schematically $\Rightarrow \begin{cases} \text{Method (1):} & f(N, Q^2) = \exp [\text{QCD} + \text{QED}] \cdot f(N, Q_0^2) \\ \text{Method (2):} & f(N, Q^2) = \exp [\text{QCD}] \cdot \exp[\text{QED}] \cdot f(N, Q_0^2) \end{cases}$

Methods differ by subleading terms O(αα_s) (Baker-Campbell-Hausdorff)

Isospin (preliminary)

- We are able to build a **neutron PDF set** for $Q^2 > 2 \,\text{GeV}^2$
 - modify evolution basis $u^p \rightarrow d^n$, $d^p \rightarrow u^n$
- The ratio Neutron/Proton PDFs
 - isospin symmetry breaking on quarks distributions

Current PDF evolution (DGLAP)

- Our DGLAP properties: possibility to switch between fixed and variable flavor number schemes (FFNS/VFNS), running α(Q²).
- Fast Kernel implementation in x-space, building the interpolation grid.

$$xN_{j}(x;\mu^{2},\nu^{2}) = \sum_{k=1}^{N_{pdf}} \sum_{\alpha=1}^{N_{x}} \Gamma_{jk}^{QCD}(x,x_{\alpha}|\mu^{2},\mu_{0}^{2}) \left[x_{\alpha}N_{k}(x_{\alpha};\mu_{0}^{2},\nu^{2}) \right],$$

$$x_{\alpha}N_{k}(x_{\alpha};\mu_{0}^{2},\nu^{2}) = \sum_{l=1}^{\mu}\sum_{\beta=1}^{N_{x}}\Gamma_{kl}^{\text{QED}}(x_{\alpha},x_{\beta}|\nu^{2},\nu_{0}^{2})\left[x_{\beta}N_{l}(x_{\beta};\mu_{0}^{2},\nu_{0}^{2})\right],$$

combining both kernels and setting $\mu = \nu = Q$ we obtain the final expression

$$xN_{j}(x; Q^{2}) = \sum_{l=1}^{N_{pdf}} \sum_{\beta=1}^{N_{x}} \underbrace{\Gamma_{jl}^{\text{QCD-QED}}(x, x_{\beta} | Q^{2}, Q_{0}^{2})}_{\text{Fast Kernel}} \left[\underbrace{x_{\beta}N_{l}(x_{\beta}; Q_{0}^{2})}_{\text{Input PDF}} \right]$$

where $\Gamma_{jl}^{\text{QCD}\cdot\text{QED}}(x, x_{\beta} | \boldsymbol{Q}^2, \boldsymbol{Q}_0^2) = \sum_{k=1}^{N_{pdf}} \sum_{\alpha=1}^{N_x} \Gamma_{jk}^{\text{QCD}}(x, x_{\alpha} | \boldsymbol{Q}^2, \boldsymbol{Q}_0^2) \Gamma_{kl}^{\text{QED}}(x_{\alpha}, x_{\beta} | \boldsymbol{Q}^2, \boldsymbol{Q}_0^2)$

• **Example:** $Z \rightarrow I^+I^-$ lepton p_T distribution

Effect of photon PDF from DIS data

- moderate in the region of the peak
- rapidly increases away from the peak
- Potentially huge contribution due to lack of constraints from DIS on small-*x*
 - ruins predictions for high m_Z/p_T^l !
- Next step: use W/Z production data to constraint photon PDF → use for e.g.
 - predictions for jets & Z' production

The mean value of the observable $\mathcal{O}[f]$ taking account o the new data is

$$\langle \mathcal{O} \rangle_{\text{new}} = \frac{1}{N} \sum_{k=1}^{N} w_k \mathcal{O}[f_k]$$

where

$$w_{k} = N_{\chi} \left(\chi_{k}^{2}\right)^{\frac{1}{2}(n-1)} e^{-\frac{1}{2}\chi_{k}^{2}}$$

useful equations

$$P(\alpha) \propto \frac{1}{\alpha} \sum_{k=1}^{N} w_k(\alpha)$$

where $w_k(\alpha)$ are the weights replacing χ_k^2 with χ_k^2/α^2 .

Reweighting with ATLAS W/Z data (preliminary)

 Z → I⁺I[−] channel is more sensitive to the photon PDF:

• due to
$$\gamma\gamma \rightarrow I^+I^-$$

Reweighting with ATLAS DY high mass data (prel.)

For each replica, compute with:

- DYNNLO for the QCD NLO.
- HORACE for the photon induced contribution.

•
$$N = 500 \rightarrow N_{eff} = 300$$

Stefano Carrazza (Unimi)

Electroweak corrections to parton distributions

Weight Histogram

ATLAS DY high mas

-0.1195±0.2580

