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New Physics?

The hierarchy problem of the electroweak Standard
Model revisited

FRED JEGERLEHNER,

Humboldt-Universitat zu Berlin, Institut fiir Physik,
Newtonstrasse 15, D-12489 Berlin, Germany
Deutsches Elektronen-Synchrotron (DESY),
Platanenallee 6, D-15738 Zeuthen, Germany

Abstract

A careful renormalization group analysis of the electroweak Standard Model reveals
that there is no hierarchy problem in the SM. In the broken phase a light Higgs turns

out to be natural as it is self-protected and self-tuned by the Higgs mechanism. It means
that the scalar Higgs needs not be protected by any extra symmetry, specifically super
symmetry, in order not to be much heavier than the other SM particles which are 'Oul d th is be it7
protected by gauge- or chiral-symmetry. Thus the existence of quadratic cutoff effects ’ *
in the SM cannot motivate the need for a super symmetric extensions of the SM, but

in contrast plays an important role in triggering the electroweak phase transition and
in shaping the Higgs potential in the early universe to drive inflation as supported by _
observation.
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New Physics?

Natural Tuning:
Towards A Proof of Concept

Sergei Dubovsky, Victor Gorbenko, and Mehrdad Mirbabayi

Center for Cosmology and Particle Physics,
Department of Physics, New York University

New York, NY, 100038, USA

Abstract

The cosmological constant problem and the absence of new natural physics at the
electroweak scale, if confirmed by the LHC, may either indicate that the nature is fine-
tuned or that a refined notion of naturalness is required. We construct a family of toy
UV complete quantum theories providing a proof of concept for the second possibility.
Low energy physics is described by a tuned effective field theory, which exhibits relevant
interactions not protected by any symmetries and separated by an arbitrary large mass
gap from the new “gravitational” physics, represented by a set of irrelevant operators.
Nevertheless, the only available language to describe dynamics at all energy scales does
not require any fine-tuning. The interesting novel feature of this construction is that
UV physics is not described by a fixed point, but rather exhibits asymptotic fragility.
Observation of additional unprotected scalars at the LHC would be a smoking gun for
this scenario. Natural tuning also favors TeV scale unification.
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Nevertheless

® Clear structure 1n fermionic
sector unexplained

® Evidence of some selective
principle (why are there no
neutral colored fermions?)

® Proton stability, running of
couplings suggestive of at least
one other scale relevant to SM

particles, ~101> GeV

® FEither fine-tuning, or a closer scale
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* lots of tops at the LHC, but only a few Higgses

e strongly interacting EWV scale O top compositeness
gly g P P

* Limitations by systematic uncertainties?! Are there analysis-related issues!?
Impact of top-tagging?

* Complementarity to m(tt) shape analyses? Is it better?
Englert, Spannowski
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Enhancing the longitudinal fraction of V's in VV scattering

People involved: A. Belyaev, E. Boos, V. Bunichev, G. Cacciapaglia, , A. Deandrea , Y.

Maravin, A. Pukhov, R. Rosenfeld... [add your name]
http://phystev.in2p3.fr/wiki/2013:participants:alexander.belyaev:wiwil

Motivation:
. to explore the LHC sensitivity to the new physics involving non-SM Higgs couplings to vector
boson which lead to enhancement of the V V ->V,V, amplitudes due to the violation of large

cancellations which are provided by the SM Higgs boson

Goal:
. devise cuts to filter-out the transverse polarizations, which mask the presence of New Physics,
and determine their efficiency.

Huge literature about this, e.g.: Han et al (2009), Kalinowski at al (2012), ...
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Very simple preliminary tests
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Angular distribution of electron in the rest frame of the parent Z after angular
cut in the other Z angular distribution
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Constraining Natural SUSY

E. Conte, B. Fuks, S. Kraml, S. Kulkarni, L. Mitzka, B. O’Leary, S. Pataraia, W. Porod
S. Sekmen, D. Sengupta, N. Strobbe, F. Wirthwein, W. Waltenberger

scenario considered:

$ higgsino like states X9 ,, X7, few GeV mass differences

® i, by, arbitrary nature
® g
mass hierarchy: my < mg, < mg
two-fold strategy:
® constraining the scenario using existing simplified model results
® doing a proper analysis

compare results of both

Status:
® parameter ranges fixed

® agreement on how to set up the chain from SLHA input files to n-tuples
= runs will start in the next days

E—
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Natural SUSY and RPV

E. Conte, M. Dolan, B. Fuks, K. Howe, Y. Jiang, B. O’Leary, M. Marjanovic, S. Pataraia,
W. Porod, P. Richardson, A. Raklev, N. Strobbe
scenario considered:

$ higgsino like states %7 ,, X, few GeV mass differences

® i, by, arbitrary nature
® g
broken R-parity: any of them can be the LSP
|ldea: systematically check which signatures have not yet been covered by existing analyses

Status: all final states worked out, check of LHC results still ongoing, two potentially
Interesting cases so far

® [ong lived LSP, in particular in case of the L L E-operator, e.g. g five-body decays

® U DD-operator: in some corner of the parameter space one has 2h + 45 as final state

E—
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Top polarization in sbottom decays
R. Godbole, B. Fuks, W.Waltenberger, T. Golling, S. Kraml, G. Belanger, S. Kulkarni

Effect of top polarization in stop decays is known to be significant

Top polarization in sbottom decays can play a role in determining the reach for direct
sbottom searches when sbottom decays to top + chargino are considered

Aim: To quantify the reach for sbottom searches by including the effect of top
polarization

Two steps involved:
=  Quantify the effect of the spin co-relations on the reach of sbottom searches

- Construct new observables which utilize the information of the top
polarization in order to enhance signal

Final states considered:

- Case I.LSP is higgsino: Final state - ttbar + MET - results exist, will be used for
cross-checks

- Case Il. LSP is bino or winolike: Final state - single lepton + jets + MET or same
sign leptons + jets + MET - new case being considered

Status: new benchmarks being searched for, basic machinery in place
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4 Benchmark scenarios
% sbottom, sgluino and stop masses at 200 GeV, 400 GeV, 600 GeV
® neutralino mass at 190 GeV 390 GeV, 590 GeV

4 Moderate cross sections:
< 2 pb, 100fb and 10 fb for a SUSY scale of 200 GeV,400 GeV and 600 GeYV, respectively
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4 Some signal distributions for 100 fb-! and for a leptonic top decay:
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4 Goal: accessing compressed SUSY spectra at 14 TeV through crazy topologies
 Toy channel: pp — g t t — t#r
% Other tested channels: too low cross sections
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The Susy H-bomb

Englert, Spannowsky, Weiler, Brooijmans, Richardson

Super-spectrum:
Compressed spectrum, boosted topologies,
Higgs(es), natural, m; — mg, < 50 GeV




Non Minimal Flavour Violation in the squark sector

K. De Causmaecker, B. Fuks, S. Sekmen, N. Strobbe, W. Porod, N. Mahmoudi

Goal
Study the effect of NMFV on current exclusion limits

Workflow

e scan over model space including NMFV

o check which points are allowed from low energy observables (b — sv, Bs — uu,
B, — v, b — suu, Aa,, AM(Bs))

o identify several benchmark points/planes and generate events

e implement existing (CMS) analysis and study how the exclusion limits change

Model parameters

e Gaugino mass scale (M1:M2:M3 = 1:2:6), range [100,1600], step 250
* Msysy = my = my, range [100,1600], step 250

* Ao = A¢/p/+ = 10,500, —1000, —5000, —10000}

e 1, range [100,850], step 250

° mpy,, range [100,1600], step 250

e tan 8 = {10,40}

® A1, A\RR, ALR, range [-0.9,0.9], step 0.15
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Higgs sector of the (unconstrained) MSSM with CP violation

A. Arbey, J. Ellis, R. Godbole, N. Mahmoudi

Study of the implications of the Higgs observables on the CP violating MSSM
scenarios.

Parameters: pMSSM like scenario with 19 free parameters,
in addition to 6 CP phases: ¢1, ®2, @3, ¢a,, Pa,, A,
Considering all the available constraints from:
» Higgs sector
» EDMs
» flavour physics

» dark matter

Two approaches:
» Random flat scans over all the parameters

» Geometric approach for the CP phases to avoid large EDMs
J. Ellis et al., arXiv:1006.3087



95% CL Limit ¢ x BR [pb]

Pair produced sgluons

Benjamin Fuks, Dirk Zerwas + LPC Clermont-Ferrand

* Explore final states with several top quarks at the LHC

e color octet scalars (SUSY: sgluon, TC:HyperPion+Coloron)

 Pair production and single production

 Final states (a choice):

* goog (done by ATLAS), tttt (done by LH11 and ATLAS), ttgg

 Chain at Les Houches:

* PYTHIAS with external dsigma/dcostheta®

* DELPHES

* Future: Feynrules (as in 2011)
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Scenarios and Status

v§=8TeV .
;10/2 <M, < 2u :

= 10
B
° 1w 000
10"
107
10-} 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
200 400 600 300 1000
m,. [GeV]

* Sanity check of generation and simulation
ok

 after DELPHES:

e at least 1 lepton

* jets > 30GeV

» example: is there a dijet mass combination
close to S00GeV? (see figure)

* more checks/analysis necessary

Scenario ttgg:
e Cross Section NLO (Goncalves-Netto et al. PRD 85
(2012) 114024)
* 500GeV: 1.3pb * (BRmax=0.5) = 6501b
* PYTHIAS Step: OK
« DELPHES Step: OK

10K ggtt produced
10K through fast simulation

Sgluon mass reconstructed
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Natural focus point SUSY via mono-v/]
Comparing the capability of LHC13 with XENONI1T in 2017

Consider Natural SUSY scenarios with light M,

Focus points region: u < My or >~ My so Q,h* < 0.12,

My, ~ 1TeV, My~ 1.5 TeV,
e Using MadGraphb and De

tan 5 =10,40
phes for LHC@13.5,14 TeV

e Compare results to XENONLT curves

A.Belyaev, A.Bharucha, W.Porod, V.Sanz

\\\\\\\\\\

Chargino/Neutralino

% ))))))) % masses for
= 7 tan 5 = 10,40

A Belyaev, A Bharucha, W Porod, V Sanz DM and Natural Susy



How low will the LHC13 go?
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Exploring new signals for simple UV
completions of effective dark matter

For simple UV completions of effective DM operators what
other searches are complementary to monojet?

Ruled out
by monojet
(LHQO)

Ruled out

by dijet (CDF) ™mm—

2.0F

% 1.0}

0.5}

0.0l

§

Ruled out
by both

My =500, dijet=blue monojet=red Vector operator

simplified model:

Relevant searches:
Monojet, Dijet, Dilepton,
Monophoton, Paired Dijet,

0.0

0.5

1> 20 Dijet res + MET, ..

Interested people:

A. Bharucha, A. Goudelis, K. Howe, G. Krnjaic, M. Marjanovic, B. Shuve

22



LHC monojet search interpretations: indirect
detection and relic density

LHC monojet search results currently reinterpreted in terms of
DM scattering cross-sections with matter (as for direct detection
exp.), using effective/simplified models

— Can we set also limits on indirect detection (gamma, proton,
anti-proton spectra)?

— Can we deduce a lower limit on the relic density?

— Which effective models are the most strongly constrained?
— What if more than one mediator/operator are present?

— \Which (full) models are the most interesting in this context?

— Can we reinterpret the DM direct search results in terms of
LHC cross-sections?

Interested people: A. Arbey, C. Balazs, G. Bélanger, F. Boudjema,
A. Goudelis, Y. Jiang, N. Mahmoudi, S. Pukhov



Presentation of Results
@ Effective field theory for DM production at colliders
> Ex.: O = 1/A*Xv"xqvuq
@ Current CMS plot, 8 TeV 20/fb (EXO-12-048-pas):
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@ For many parameters, effective field theory not valid

@ Show where effects of mediator mass are important and perturbativity limits

@ Always make clear whether effective operator is for direct detection or LHC
monojets
» CMS analysis mixes the two by quoting bounds on A even when bounding
cross sections in the full theory

@ Interested people: Alex Arbey, Csaba Balazs, Andreas Goudelis, Kiel Howe,
Yun Jiang, Gordan Krnjaic, Brian Shuve

DM at Colliders June 21, 2013 1/2



Presentation of Results

@ Bai, Fox, Harnik, arXiv:1005.3797 plot on left, proposed plot on right
(T'med = Mmea/100):

Constant g Contours o = g*u?/M*
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@ Include contours of mediator couplings (comparison with direct mediator
search limits); makes it clear if theory is perturbative

@ Can replace line for each mediator mass with a band that sweeps out
different values of mediator width

@ Similarly, can plot a band associated with the nuclear uncertainties for ogy for
each mediator mass

DM at Colliders June 21, 2013 2/2



End of Stay at L.es Houches

® Many interesting projects started...

® ... and time to go home
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® Many interesting projects started...

® ... and time to go home

® Contributions to proceedings are due ~mid-December

® Template and instructions on the web (not wiki)
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End of Stay at L.es Houches

® Many interesting projects started...

® ... and time to go home

® Contributions to proceedings are due ~mid-December

® Template and instructions on the web (not wiki)

® What should we push?

Les Houches 2013 Progress & Plans
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Care to Guess?
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