# 2gamma isolation

Daniel de Florian Leandro Cieri

### Les Houches 2013



#### Two mechanisms for photon production



Direct (point-like)

Single and double resolved (collinear fragmentation)

Separation between them NOT physical in general (beyond LO)



Still talk about direct and resolved at NLO and beyond: + frag. fact. scale MS factorization scheme (convention) dependence of each term



Standard Photon Isolation

Smooth Photon Isolation S.Frixione  $E_T^{had}(\delta) \le E_{T\,max}^{had}$ 

 $E_T^{had}(\delta) \le E_{T\,max}^{had} \ \chi(\delta)$ 

only soft emission allowed if collinear to photon

no quark-photon collinear divergences

- no fragmentation component (only direct)
- Direct contribution well defined

More restrictive than usual cone : lower limit on cross section (close for small R)

In real (TH)life... how much different? NLO comparison  $R_0=0.4$  n=1

CMS Higgs cuts at 7 TeV

 $\leq 1$ 

Standard: direct+fragmentation (Diphox)

| $E_{Tmax}^{had}$ | standard/smooth |  |
|------------------|-----------------|--|
| 2 GeV            | <  %            |  |
| 3 GeV            | <  %            |  |
| 4 GeV            | 1%              |  |
| 5 GeV            | 3%              |  |
| 0.05 рт          | <  %            |  |
| 0.5 рт           | 11%             |  |

if isolation tight enough, hardly any difference between standard and smooth cone

Check less inclusive observables: any significant difference?

**Diphoton production**  $\sqrt{s} = 8 \text{ TeV}$  **CTEQ6M**  $\mu_F = \mu_R = M_{\gamma\gamma}$ 

 $p_T^{\gamma \, hard} \ge 40 \,\text{GeV}$   $p_T^{\gamma \, soft} \ge 30 \,\text{GeV}$   $100 \,\text{GeV} \le M_{\gamma\gamma} \le 160 \,\text{GeV}$   $|\eta^{\gamma}| \le 2.5$   $R_{\gamma\gamma} \ge 0.45$ 

full NLO Cone (DIPHOX) vs Cone with LO fragmentation vs NLO Smooth



#### Cone/Smooth ~ 1% effect at NLO

#### But Smooth allows to reach NNLO were corrections are >40%



#### **Azimuthal Distribution**

#### Usually claimed that "fragmentation effects" large at small azimuth



Still some statistical fluctuations (short run..)

Differences negligible compared to higher order effects !



#### Same feature for all distributions

Smooth cone @NLO ~ Cone @ NLO I-2% level Cone + LO fragmentation component worse than 5%

## $\chi(\delta) = \left(\frac{1 - \cos(\delta)}{1 - \cos(R_0)}\right)^n$ Eric: that was proposed because it matches e+e- dynamics

### In hadronic collisions better use something like

 $2\left(\cosh(\Delta y) - \cos(\Delta \phi)\right) \sim \left[(\Delta y)^2 + (\Delta \phi)^2\right] = r^2$ 

 $E_T^{had} \le E_{T\,max}^{had} \left(\frac{r}{R}\right)^{2n}$ 

|     | Isolation | $\sum E_T^{had} \leq$ | $\chi(r)$                                                                      | $\sigma_{total}^{NLO}(\text{fb})$ |
|-----|-----------|-----------------------|--------------------------------------------------------------------------------|-----------------------------------|
| i   | Frixione  | 2GeV                  | $\left(\frac{1}{2} - \frac{1}{2}\cos\left(\frac{\pi r}{R}\right)\right)$       | 3760                              |
| ii  | Frixione  | $2 \mathrm{GeV}$      | $\left(\frac{1}{2} - \frac{1}{2}\cos\left(\frac{\pi r}{R}\right)\right)^{0.5}$ | 3921                              |
| iii | Frixione  | $2 \mathrm{GeV}$      | r/R                                                                            | 3769                              |
| iv  | Frixione  | 2 GeV                 | $(r/R)^{2}$                                                                    | 3731                              |
| V   | Frixione  | $2 \mathrm{GeV}$      | $\left(\frac{1 - \cos(r)}{1 - \cos(R)}\right)$                                 | 3724                              |
| V   | Standard  | 2 GeV                 | 1                                                                              | 3731                              |

More homework: try a few more profiles (distributions) Simple summary

- solid and well understood • EXP: use (tight) Cone isolation
- accurate, better than using • TH: use smooth cone with same R and E<sub>Tmax</sub> cone with LO fragmentation Estimate TH isolation uncertainties using different profiles in smooth cone

In cases, using LO fragmentation component can make things look very strange...

Cone isolation (DIPHOX)

