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where is room/possibility/need for improvements



The SM Higgs boson is responsible for EW symmetry breaking

๏ The shortest introduction about Higgs Boson Physics
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End of introduction



Higgs at Hadronic Colliders
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gg fusion

vector boson fusion

associated production with W,Z

associated production with heavy quarks

Production Channels at the LHC

๏ Gluon-gluon fusion dominates 
    due to large gluon luminosity



Heavy Quark Associated production
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Plümper, Spira, Zerwas ’01]
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R. Harlander ( BU Wuppertal ) Inclusive Higgs Cross Sections January 2012 4 / 42
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full detector simulation and better 
background evaluation lead to 
more pessimistic view

Resurrected exploiting 
boosted analysis ?

•It was considered an important discovery channel in low mass region  

•Not an easy channel because of background and signature

                                             boosted analysis

LO known for a long time

NLO provides more stable results (~10% scale)
 and 20% increase 

Kunszt (1984); Gunion (1991), Marciano, Paige (1991)

Beenakker et al (2002), Dawson, Reina (2001), 
Wackeroth et al (2003)
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full detector simulation and better 
background evaluation lead to 
more pessimistic view

Resurrected exploiting 
boosted analysis ?

tt̄H

Plehn, Salam, Spannowsky (2009)

Yukawa
 coupling

Recent work includes spin correlations in 
top decay, exclusive distributions



Higgs-strahlung processes

[Brein,Djouadi,Harlander 04] [Denner,Dittmaier,Kallweit,Mück 11]
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Associated VH production

Hq̄

q

W, Z

W, Z

Han, Willenbrock (1990)

Butterworth et al (2007)

Ciccolini, Dittmaier, Kramer (2003)
HAWK: Denner, Dittmaier, Kallweit, Mück (2011)

van Neerven et al (1991)

๏ Main channel for low mass at Tevatron

๏ From QCD point of view very similar to Drell-Yan (NNLO)

๏ @ NLO exactly DY :  ~30% corrections

๏ EW corrections known :  -(5/10) % 
     more in distributions

Possible at the LHC with boosted analysis
bb decay
-



H

W,Z

1

~2-6% contribution

Brein, Harlander, Djouadi (2003)

๏ @ NNLO extra contributions involving a heavy quark loop Hq̄

q

W, Z

W, Z

H

W,Z

1

~1% contribution

Brein, Wiesemann, Harlander, Zirke (2011)

๏ DY approach : fully exclusive NNLO calculation Ferrera, Grazzini, Tramontano (2011)

• Very stable results at Tevatron
• Fixed order challenged at LHC (boosted analysis with jet veto)

Shape of pT spectrum of dijet system is stable

QCD corrections (N3LO) Altenkamp et al (2012)
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q
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Vector Boson Fusion
๏ Almost one order of magnitude smaller
    than gg fusion but still very interesting 

Signature :  2 highly energetic jets without
hadronic activity in a large rapidity interval

Total rate:   Han,  Willenbrock(1991) 
Distributions:   Figy,  Oleari, Zeppenfeld (2003)
                      J.Campbel, K.Ellis (2003)

๏ EW+QCD corrections computed

Ciccolini, Denner, Dittmaier (2008)

๏ Moderate NLO corrections ~5-10% WBF: QCD+EW corrections

EW, cuts
EW, no cuts

QCD, cuts
QCD, no cuts
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NLO QCD+EW
[Ciccolini, Denner, Dittmaier ’08]
! HAWK

EW+SUSY
[Figy, Palmer, Weiglein ’10]

R. Harlander ( BU Wuppertal ) Inclusive Higgs Cross Sections January 2012 20 / 42

HAWK

Bolzoni, Maltoni, Moch, Zaro (2011)

๏ QCD NNLO within structure function approach

Good Theoretical accuracy (2% scale dependence) 



gg fusion
  Top quark dominates

Graudenz, Spira, Zerwas (1993)

  Higher order corrections very large:                 at NLO                    O(100%)
Dawson (1991); Djouadi, Spira, Zerwas (1991) Large top mass limit

exact

Harlander, Kilgore (2002)
Anastasiou, Melnikov (2002) 
Ravindran, Smith, van Neerven (2003)

Within large      limitMt

  Still sizable at NNLO: +25% at LHC and +30% at Tevatron                    

Ht, b

g

g

K

MH/2 < µF , µR < 2MH

1/2 < µF /µR < 2

Scale band

Start to observe some overlap at NNLO/NLO

Effective vertex

• Higher order QCD corrections very challenging due
to heavy quark loop at LO

• Work in the MH/4Mt ! 1 approximation: effective
ggH vertex (1 loop less)
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Catani, deF, Grazzini, Nason (2003)

  Threshold NNLL (+NNLO) Resummation
  9% at 7 TeV, 13% at Tevatron

• K!factors defined with respect

• With                            and                     but

σLO(µF = µR = MH)

µF (R) = χL(R)MH 0.5� !F/!R � 20.5� !L(R) � 2

+40%

+12� 15%

• Two loop EW corrections not negligible ~ 5%

3 Numerical results

For the NLO electroweak corrections we use our recent result [8] and consider a Higgs mass
range spanning from 100GeV to 500GeV. In this region we cross the WW , ZZ and tt̄ thresholds.
A naive computation of the amplitude with conventional on-shell masses as input data reveals the
presence of singularities at the WW and ZZ thresholds; in order to cure them, we have introduced
in our computation complex masses [11], following the suggestion of Ref. [10]. The behavior at the
tt̄ thresholds, instead, is smooth, and the on-shell mass of the top quark can be safely used.

In the calculation all light-fermion masses have been set to zero and we have defined the W and
Z boson complex poles by

sj = µj (µj − i γj) , µ2
j = M2

j − Γ2
j , γj = Γj

(

1 −
Γ2

j

2M2
j

)

, (8)

with j = W,Z. As input parameters for the numerical evaluation we have used the following values
taken from Ref. [22]:

M
W

= 80.398GeV, M
Z

= 91.1876GeV,
ΓZ = 2.4952GeV, GF = 1.16637 × 10−5 GeV−2.

(9)

For the mass of the top quark, we have used Mt = 170.9GeV [23]; for the width of the W boson,
we have chosen the value ΓW = 2.093GeV, predicted by the Standard Model with electroweak and
QCD corrections at one loop.

Our results for δEW defined in Eq.(7) are shown in Fig. 1, where we include the complete
corrections, comprehensive of light- and top-quark contributions, in the entire range of interest. The
introduction of the complex-mass scheme in our two-loop evaluation has a striking consequence,
visible around two-particle thresholds, where artificial cusp effects disappear. A detailed analysis
of this issue can be found in Ref. [9].
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Figure 1: NLO electroweak percentage corrections to the partonic cross section σ(g g → H).

For including the NLO electroweak corrections in the hadronic cross section of Eq.(1), we have
used the FORTRAN code HIGGSNNLO written by M. Grazzini (see also Ref. [24]), with QCD

4

Actis,et al (2008)

g

g

H

(a)

g

g

H

(b)

Figure 1: Examples of two-loop diagrams contributing to gg → H.

We would like to stress that Eq.(6) is finite only in the BFG while in the standard Rξ Feynman
gauge it shows some ultraviolet poles.

Explicitly, we have in the BFG and in units α/(4πs2)

Kr = Nc
1
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[

−tH −
1

8
+ (tH +

1

2
)
√

4tH − 1A(tH)

]

+
13 − 2

√
3π

16wH

+
(3 + 4c2) log c2

8s2
−

3 log wH

8(1 − wH)
+

5 + 12zH

16c2
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5 + 12wH

8

−3

(√
4wH − 1

2
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2w2
H√
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)

A(wH) −
3

2c2

(√
4zH − 1

2
+

2z2
H√

4zH − 1

)

A(zH), (8)

where Nc is the color factor, s2 ≡ sin2 θW , c2 = 1 − s2, wt ≡ m2
W

/m2
t , wH ≡ m2

W
/m2

H
, zH ≡

m2
Z
/m2

H
and

A(x) = arctan
1√

4x − 1
. (9)

The two-loop top contribution to the gluon fusion production cross section can be written as:

G2l
t = Kr G1l + G2l

1PI , (10)

where G2l
1PI

contains the the two-loop 1PI corrections.
To compute G2l

1PI
we notice that the diagrams contributing to it can be naturally organized

in two classes: i) diagrams with a triangular fermionic loop as well as top mass counterterm
diagrams, that can be classified as corrections to the one-loop amplitude, like the one shown in
Fig.(1a); ii) diagrams in which the Higgs does not couple directly to the top, Fig.(1b). We notice
that in the BFG the two sets of diagrams are separately finite and equal to zero for vanishing
Higgs mass.

To evaluate both kind of graphs we make the observation that, taken the bottom quark
massless, some diagrams seem to have a cut at q = 0, see Fig.(2a), q being the momentum
carried by the Higgs. However, this cut is actually not present because of the helicity structure
of the diagram. In fact, the Higgs should couple to one left-handed and one right-handed bottom
quark, therefore the one-loop amplitude on the right-hand side of the dashed line in Fig.(2a) is
non-zero only when the bottom quarks have opposite helicities, while in the tree amplitude on
the left-hand side the helicity is conserved along the quark line. Since helicities cannot match,
no cut develops at q = 0. In this situation, the first cut in these diagrams appears at 2mW

(see Fig.(2b)). Therefore, the evaluation of G2l
1PI

for Higgs mass in the intermediate region can
be obtained by computing the relevant diagrams employing an ordinary Taylor expansion in the
variable h4w ≡ q2/(4m2

W
).

4

• QCD corrections completely dominated by soft and virtual gluon radiation

Aglietti, Bonciani, Degrassi, Vicini (2004)
Degrassi, Maltoni (2004)

Actis, Passarino, Sturm, Uccirati (2008)

Improvements over NNLO

NNLL



• Mixed EW-QCD effects evaluated in EFT approach 

supports “complete factorization” of EW effects 

Anastasiou et al (2008) 

• EW effects from real radiation < 1% Keung, Petriello(2009); Brein (2010)
Anastasiou et al (2011) 

complex pole
Goria, Passarino, Rosco (2011)

• Higgs Line-shape

�H!X(mH) =

Z
dQ2Q�H!X(Q)

⇡

�H(Q)

(Q2 �m2
H)2 +m2

H�2
H

Improved Higgs Cross-section  @ LHC
 Use full result at NLL+NLO and effective Lagrangian for top quark contribution 

(normalized to Born) for NNLL+NNLO

 Include EW effects assuming complete factorization

�QCD = �NNLL+NNLO
top + �NLO

bottom

• dFG: deF, Grazzini 

Actis, Passarino, Sturm, Uccirati (2008)⇥best = (1 + �EW ) ⇥QCD

Schreck, Steinhauser (2007); 
Marzani et al (2008);

Harlander et al (2009,2010)
• Better understanding of (loop) mass effects



• SCET resummation
• Exponentiates       terms (concern about consistency)
✓ Central value agrees with others
• Scale dependence 3% or less               underestimates TH uncertainty

Ahrens, Becher, Neubert, Yang (2010) 

⇡2

• iHixs
• Based on ABPS + Breit-Wigner line-shape + EW effects from real radiation 

Anastasiou, Buehler, Herzog, Lazopoulos (2012) 

• Baglio, Djouadi, Ferrag, Godbole (2011)
• more conservative estimate of uncertainties 

Other calculations

Agreement within uncertainties with LHC-HXS numbers for light Higgs

Fully Exclusive: FEHIP

HNNLO

Anastasiou, Melnikov, Petriello (2005) 

Catani, Grazzini (2007)
Grazzini (2008)

‘now’ including HQ mass 
dependence exactly up to NLO

FEHIPRO Anastasiou, Lazopoulos, Stoeckli  



Table 7: Theoretical (THU) and parametric PDF+αs uncertainties (PU) for the total Higgs-boson
production cross sections at the LHC with CM energies 7 TeV and 14TeV, as assessed by the LHC
Higgs Cross Section Working Group [25] employing the PDF4LHC [24] recipe for PU, as well as the
typical size of radiative corrections of the strong (QCD) and electroweak (EW) interactions. The colour
coding NLO/NNLO/NNLO+ refers to the respective perturbative order included in the predictions,
where NNLO+ means that resummations beyond the fixed-order correction are included.

LHC @
√
s = 7TeV LHC @

√
s = 14TeV

uncertainties corrections uncertainties corrections
MH[GeV] THU PU QCD EW THU PU QCD EW

ggF < 500 6−10% 8−10% >∼100% 5% 6−14% 7% >∼100% 5%

VBF < 500 1% 2−7% 5% 5% 1% 3−4% 5% 5%

HW < 200 1% 3−4% 30% 5−10% 1% 3−4% 30% 5−10%

HZ < 200 1−2% 3−4% 40% 5% 2−4% 3−4% 45% 5%

ttH < 200 10% 9% 5% ? 10% 9% 15−20% ?

At Tevatron the Higgs-strahlung channels of HW/HZ production compete with VBF in size for Higgs
masses MH

<∼ 100−200GeV mainly due to the different combinations of PDFs. For a pp̄ initial state
high-energy qq̄ collision, which is needed for Higgs-strahlung in LO, is preferred over qq scattering, since
in this case the qq̄ channel can proceed via two valence quarks, which carry much more momentum
than sea quarks on average. The total Higgs-strahlung cross section for HW production, where the
sum over W± is taken, is larger than the one for HZ production by roughly a factor of two. The
smallest relevant cross section in all cases is provided by Higgs production in association with tt̄ pairs,
whose suppression is mainly due to the large invariant mass required to produce the three-particle final
state of heavy objects. Similar to pure tt̄ pair production, tt̄H production is largely dominated by qq̄
annihilation at Tevatron, but by gg fusion at the LHC. In the transition from Tevatron to the LHC and
with increasing LHC energy, the suppression of the tt̄H cross section steadily decreases with respect to
the other channels, since the phase-space suppression of the heavy tt̄H final state is fading for larger
collider energy. The main motivation to measure the tt̄H cross section clearly rests in the direct access to
the top Yukawa coupling, without contamination from other couplings; even a qualitative measurement
at the LHC would be a great success.

Predictions for hadronic collisions in general involve several serious sources of uncertainties that are
tied to the hadronic environment, as explained in more detail in Section 2.4. Perturbative corrections,
especially of the strong interactions, have to be taken into account as much as possible, in order to
minimize the uncertainties, and the residual uncertainties, which are due to missing higher-order effects
and parametric errors have to be quantified carefully. Figure 16 illustrates the error estimate as assessed
by the LHC Higgs Cross Section Working Group for the total cross sections at the LHC [25], compris-
ing both theoretical and parametric errors (PDF+αs). Table 7 gives a brief overview of theoretical
and parametric PDF+αs uncertainties, for the latter following the recipe of the PDF4LHC Working
Group [24]; the explicit numbers are based on the results given in Ref. [25]. For later reference, the
table also illustrates the typical size of the known QCD and EW corrections. A similar, but rather
conservative estimate of cross-section uncertainties for Tevatron can be found in Ref. [199].

The overview over the total cross sections shown in Figures 15 and 16 can only give a rough idea
about the importance the respective production channels for Higgs-boson discovery or for later precision
studies. The total cross sections provide the total production rates for Higgs bosons, but in practice
the rates of potentially observable events is relevant. Moreover, the signatures left in the detectors are

41

Dittmaier and Schumacher (2012)Uncertainties in inclusive cross-sections

PDF4LHC recommendation for Higgs

• Compute uncertainties using global MSTW & CT & NNPDF
• Obtain the envelope of all 68% c.l. bands : uncertainty

±0.0012 (±0.002) at 68% (90%) c.l.��s(MZ) =supplemented with

scale pdf + ↵S

�(mH = 125GeV) = 19.52+7.2%
�7.8%

+7.5%
�6.9% pb



Even Higher orders N3LO

• Towards N3LO and N3LL
Moch, Vermaseren, Vogt (2005)

g(4) � �2
s(�s lnN)n

Baikov et al (2009)
Gehrmann et al (2010)
Lee, Smirnov, Smirnov (2010)

combination of small x and threshold to estimate N3LO Ball et al (2013)

Possible to reach Soft+Virtual approximation (and even beyond that) in near future

•Triple real emission: expansion in (1-z) Anastasiou, Duhr, Dulat, Mistlberger (2013)

•3 loop form factor

•2 loop + single emission : SV approximation

•1 loop + double emission : needs soft current for SV approximation 
or explicit calculation (expansion in (1-z) )

Soft corrections at N3LO



H+jet at NNLO
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observed in the calculation of higher-order QCD corrections to the Higgs boson production cross section
in gluon fusion. The reduced scale dependence is also apparent from Fig. 10, where we plot total cross
section as a function of the renormalization and factorization scale µ in the region p⊥,j < µ < 2mh.

Finally, we comment on the phenomenological relevance of the “gluons-only” results for cross
sections and K-factors that we report. We note that at leading and next-to-leading order, quark-gluon
collisions increase the H + j production cross section by about 30 percent, for the input parameters
that we use in this paper. At the same time, the NLO K-factors for the full H + j cross section are
smaller by about 10−15% than the ‘gluons-only’K-factors, presumably because quark color charges are
smaller than the gluon ones. Therefore, we conclude that the gluon-only results can be used for reliable
phenomenological estimates of perturbative K-factors but adding quark channels will be essential for
achieving precise results for the H + j cross section.
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3.2.4 Numerical results
We present here initial numerical results for Higgs production in association with one or more jets at
NNLO. A detailed series of checks on the presented calculation were performed in Ref. [44], and we
do not repeat this discussion here. We compute the hadronic cross section for the production of the
Higgs boson in association with one or more jets at the 8 TeV LHC through NNLO in perturbative QCD.
We reconstruct jets using the k⊥-algorithm with ∆R = 0.5 and p⊥,j = 30 GeV. The Higgs mass is
taken to be mH = 125 GeV and the top-quark mass mt = 172 GeV. We use the latest NNPDF parton
distributions [57, 58] with the number of active fermion flavors set to five, and numerical values of the
strong coupling constant αs at various orders in QCD perturbation theory as provided by the NNPDF
fit. We note that in this case αs(mZ) = [0.130, 0.118, 0.118] at leading, next-to-leading and next-to-
next-to-leading order, respectively. We choose the central renormalization and factorization scales to be
µR = µF = mH .

In Fig. 9 we show the partonic cross section for gg → H + j multiplied by the gluon luminosity
through NNLO in perturbative QCD:

β
dσhad

d
√

s
= β

dσ(s,αs, µR, µF )

d
√

s
× L(

s

shad
, µF ), (20)

where β measures the distance from the partonic threshold,

β =

√

1−
E2

th

s
, Eth =

√
m2

h + p2
⊥,j + p⊥,j ≈ 158.55 GeV. (21)

The partonic luminosity L is given by the integral of the product of two gluon distribution functions

L(z, µF ) =

∫ 1

z

dx

x
g(x, µF )g

( z

x
, µF

)
. (22)

It follows from Fig. 9 that NNLO QCD corrections are significant in the region
√

s < 500 GeV. In par-
ticular, close to partonic threshold

√
s ∼ Eth, radiative corrections are enhanced by threshold logarithms

lnβ that originate from the incomplete cancellation of virtual and real corrections. There seems to be
no significant enhancement of these corrections at higher energies, where the NNLO QCD prediction for
the partonic cross section becomes almost indistinguishable from the NLO QCD one.

We now show the integrated hadronic cross sections in the all-gluon channel. We choose to vary
the renormalization and factorization scale in the range µR = µF = mH/2, mH , 2mH . After convolu-
tion with the parton luminositites, we obtain

σLO(pp→ Hj) = 2713+1216
−776 fb,

σNLO(pp→ Hj) = 4377+760
−738 fb,

σNNLO(pp→ Hj) = 6177−204
+242 fb.

(23)

We note that NNLO corrections are sizable, as expected from the large NLOK−factor, but the perturba-
tive expansion shows marginal convergence. We also evaluated PDF errors using the full set of NNPDF
replicas, and found it to be of order 5% at LO, and of order 1-2% at both NLO and NNLO, similarly to
the inclusive Higgs case [58]. The cross section increases by about sixty percent when we move from LO
to NLO and by thirty percent when we move from NLO to NNLO. It is also clear that by accounting for
the NNLO QCD corrections we reduce the dependence on the renormalization and factorization scales
in a significant way. The scale variation of the result decreases from almost 50% at LO, to 20% at NLO,
to less than 5% at NNLO. We also note that a perturbatively-stable result is obtained for the scale choice
µ ≈ mH/2. In this case the ratio of the NNLO over the LO cross section is just 1.5, to be compared
with 2.3 for µ = mH and 3.06 for µ = 2mH , and the ratio of NNLO to NLO is 1.2. A similar trend was
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Figure 2: K-factors for Higgs pair production at the LHC as a function of the Higgs pair invariant
mass Q. The bands are obtained by varying the renormalization and factorization scales as
described in the main text.

bands. We can also observe that the scale dependence is substantially reduced: the NNLO band
results in a about a ±8% variation around the central value, more than a factor of two smaller
than the corresponding NLO band.

We want to recall that in the case of single-Higgs boson production the soft-virtual approxima-
tion (compared to the full NNLO result) is known to be accurate to a few percent level. We expect
it to be even better for Higgs pair production due to the larger invariant mass of the final state,
which leaves less energy for extra hard radiation. In fact, we computed the NLO soft-virtual cross
section, finding K SV

NLO = 1.95, which differs from the full NLO result by less than 2%. In contrast,
the heavy top quark approximation is not expected to be as good as for single-Higgs production
since the invariant mass of the Higgs pair is not small compared to the top quark mass. Still a
number of improvements can be applied to the current approximation, as keeping the exact full
mass dependent LO expressions wherever they appear in the higher order expansion [18]. Future
works may be directed either towards a full NNLO calculation (in the heavy top limit), or to
compute subleading terms in the heavy top quark mass expansion at NLO.
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algorithm FIRE [33] to reduce the resulting expressions into master integrals, which are obtained
from Ref. [34].

The partonic virtual corrections σv to the cross section are obtained by integrating the squared
amplitudes over the Higgs pair phase space, that is

σv =
1

2s

1

2 2282(1− ε)2

∫ ∣∣M
∣∣2 dPS , (5)

where we also include the flux factor, the average over helicities and colors of the incoming gluons
and the factor for identical particles in the final state. Expanding in powers of the strong coupling
αS:

σv =
(αS

2π

)2
[
σ(0) +

αS

2π
σ(1) +

(αS

2π

)2
σ(2) +O(α3

S)

]
. (6)

The renormalized NLO virtual contribution σ(1) is given by

σ(1) =

∫ t+

t−

dt

{

2Re
[
I(1)
g

] dσ
dt

(0)

+
dσ(1)

fin

dt

}

, (7)

while the renormalized NNLO virtual term σ(2) can be expressed in the following general way:

σ(2) =

∫ t+

t−

dt

{(∣∣∣I(1)
g

∣∣∣
2

+ 2Re

[(
I(1)
g

)2
]
+ 2Re

[
I(2)
g

]) dσ

dt

(0)

+ 2Re
[
I(1)
g

] dσ(1)
fin

dt
+

dσ(2)
fin

dt

}

, (8)

where we have used Catani’s formula for the infrared singular behaviour of the two-loop QCD
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1 Introduction

Recently, both ATLAS and CMS collaborations have discovered a new boson with a mass around
125GeV [1,2] at the Large Hadron Collider (LHC). Its properties are, so far, compatible with the
long sought Standard Model (SM) Higgs boson [3]. In order to decide whether this particle is
indeed responsible for the Electroweak Symmetry Breaking (EWSB), it is crucial to measure its
couplings to fermions and gauge bosons and to verify their proportionality to the particle masses.
Furthermore, a precise measurement of the Higgs self-interaction is needed.

The measurement of the Higgs self-couplings is the only way to reconstruct the scalar potential.
After EWSB, the Higgs potential takes the form

V (H) =
1

2
M2

HH
2 + λ vH3 +

1

4
λ′H4 . (1)

In the SM the trilinear and quartic self-couplings take the same value, λ = λ′ = M2
H/(2v

2), where
v ! 246GeV is the Higgs vacuum expectation value and MH its mass. In most new physics
scenarios these couplings deviate from the SM values. Therefore, a determination of the Higgs
self-interaction is necessary both to understand the EWSB mechanism and to try to distinguish
the SM from other models.

The Higgs quartic coupling can be in principle studied via triple Higgs boson production.
However, this cross section is too small to be measured at the LHC [4], and then a determination
of its value is not possible at present time. The situation is different for the trilinear coupling λ
via Higgs pair production if very high luminosities can be achieved,

The possibilities of observing Higgs pair production at the LHC have been discussed in Refs.
[5–12]. Though the analysis is challenging due to the smallness of the signal cross section and the
large QCD background, it has been shown to be achievable at a luminosity-upgraded LHC. For
example for bb̄γγ and bb̄τ+τ− final states, after the application of proper cuts, the significances
obtained are ∼ 16 and ∼ 9 respectively, for

√
sH = 14TeV and

∫
L = 3000 fb−1 [8]. These are so

far the most promising final states for the Higgs trilinear coupling analysis. The application of jet
substructure techniques was shown to be important to further improve on the sensitivity of the
discovery channels [6, 7, 13].

As it occurs for single Higgs [14], the dominant mechanism for SM Higgs pair production
at hadron colliders is gluon-gluon fusion, mediated by a heavy-quark (mainly top) loop. The
corresponding cross section has been calculated at leading-order (LO) in Refs. [15–17]. The next-
to-leading order (NLO) QCD corrections have been evaluated in Ref. [18] in the large top-mass
approximation and found to be rather large, with an inclusive K-factor close to 2, a very similar
situation to the one observed for single-Higgs production at the same order [19–21]. Considering
that the next-to-next-to-leading order (NNLO) corrections for single-Higgs are also sizable [22–24],
it becomes essential to reach the same accuracy for double-Higgs production in order to provide
precise predictions for the process.

A full NNLO calculation requires the evaluation of the corresponding amplitudes for double
real radiation, real emission from one-loop corrections and the pure virtual two-loop contribution.
In this article we present the explicit results for two-loop virtual corrections to the partonic process
gg → HH in the heavy top quark limit. Furthermore, we combine these results with the universal
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algorithm FIRE [33] to reduce the resulting expressions into master integrals, which are obtained
from Ref. [34].

The partonic virtual corrections σv to the cross section are obtained by integrating the squared
amplitudes over the Higgs pair phase space, that is

σv =
1

2s

1

2 2282(1− ε)2
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∣∣2 dPS , (5)

where we also include the flux factor, the average over helicities and colors of the incoming gluons
and the factor for identical particles in the final state. Expanding in powers of the strong coupling
αS:
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where we have used Catani’s formula for the infrared singular behaviour of the two-loop QCD
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formula presented in Ref. [25] to obtain the NNLO soft-virtual approximation to the cross section,
as a first step towards a full NNLO calculation, and present numerical results for the cross section
expected at the LHC within that approximation.

2 Two-loop virtual corrections

We present here our results on the two-loop corrections. In order to simplify the presentation we
directly provide the contribution of two-loop diagrams to the corresponding partonic cross section.
As usual, divergences are dealt by using dimensional regularization with n = 4 − 2ε dimensions,
and we use the MS renormalization scheme.

As it was mentioned before, we strictly work within the heavy top quark approximation, where
the single and double Higgs coupling to gluons is given by the effective Lagrangian

Leff = −1

4
GµνG

µν

(
CH

H

v
− CHH

H2

v2

)
, (2)

where Gµν represents the gluonic field strength tensor. In order to obtain the NNLO cross section
for gg → HH , we need the coefficients CH and CHH up to O(α3

S). The first one takes the following
form [?, 26]:

CH = −1

3

αS

π

{
1 +

11

4

αS

π
+
(αS

π

)2
[
2777

288
+

19

16
log

µ2
R

M2
t

+Nf

(
−67

96
+

1

3
log

µ2
R

M2
t

)]
+O(α3

S)

}
,

(3)
where Mt is the on-shell top quark mass, µR is the renormalization scale and Nf is the number of
light flavors. The coefficient CHH is known up to O(α2

S) [20], and coincides to that order to CH .
We will write

CHH = −1

3

αS

π

{
1 +

11

4

αS

π
+
(αS

π

)2
C(2)

HH +O(α3
S)

}
. (4)

For the phenomenological results, we will assume C(2)
HH = C(2)

H , where the late is defined by the
squared bracket in Eq.(3).

In Figure 1 we show a sample of the Feynman diagrams needed for the calculation, and we
introduce the notation for each contribution. Since the structure of gHH and ggHH vertices is
the same, the loop corrections to both Born level diagrams are proportional to the gluon form
factor, and those contributions are labeled as FF(1) and FF(2). To compute these amplitudes, we
rely on the two-loop gluon form factors presented in [28–30]. On the other hand, the contributions
arising from diagrams with tree-level two gHH vertices (labeled as 2V(1)) and the corresponding
one-loop correction to them (labeled as 2V(2)), which are of the same order in powers of the
strong coupling constant as the form factor-like corrections FF(1) and FF(2) have more complex
kinematics and require an explicit computation.

The NNLO virtual corrections (at the level of squared amplitudes) include the interference
between FF(2)+2V(2) and LO diagrams, the squares of FF(1) and 2V(1) and their corresponding
interference. The calculation was performed using the Mathematica packages FeynArts [31] and
FeynCalc [32] for the generation of the diagrams and the manipulation of amplitudes, and the
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Fig. 13: Distribution of Higgs pT for different generators for Higgs boson of mH = 125 GeV at 8 TeV.
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POWHEG+PYTHIA (blue, dashed in Fig. 8; black, dashed in Fig. 3 of Ref. [14]). Considering
an exact top- and bottom-mass dependence (red, solid curve in our plot; blue, solid curve
in Ref. [14]), on the other hand, the mass e↵ects on the two approaches appear to be
considerably di↵erent for pT . 50 GeV, i.e. in the region where resummation becomes im-
portant. However, both approaches are theoretically well defined and the numerical results
are consistent within the respective resummation formalism. The discrepancy might be
caused by the di↵erent treatment of the next-to-leading logarithms in the two approaches.
Furthermore, it needs to be clarified whether the discrepancy arises from the normaliza-
tion factor, or whether it is a genuine e↵ect in the cross section with full mass dependence.
Currently, it has to be considered as a measure of the theory uncertainty at small pT .
Clearly, the source of the di↵erence deserves further investigation.11

In summary we find that in all cases studied in this paper it is not a good approximation
to account for b-loop e↵ects using the reweighted cross section in the heavy-top limit. We
conclude that bottom-mass e↵ects should be included only up to the order where their
calculation is feasible and should be omitted otherwise.

11According to Ref. [51] in the MC@NLO approach [52] the shape of the curve including top- and
bottom-mass dependence is much more similar to ours (red, solid curve in Fig. 8).
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Figure 3: Transverse momentum distribution for a SM Higgs with mH = 120 GeV. Left plots: in red (dashed)

the current POWHEG implementation, in which the NLO-QCD corrections are computed in the HQET and are

rescaled by the LO cross section with full top and bottom mass dependence; in blue (solid) the exact NLO-QCD

corrections with full top and bottom mass dependence. The results are obtained at NLO QCD (upper plots),

including the effects of the Sudakov form factor (middle plots), including also the effects of the PYTHIA QCD

PS (lower plots). Right plots: the full NLO-QCD results (blue, solid) and the ones obtained by introducing

in POWHEG only the exact top-mass dependence (black, dashed), both normalized to the results of the current

POWHEG implementation.
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NLL with HQ (t,b,c) masses
Mantler, Wiesemann similar MC@NLO

and Grazzini,Sargsyan

How to include effect of HQ masses?

ongoing work within this workshop



Jet-veto
Use of fixed order calculations 
dangerous for jet-veto cross section

underestimate uncertainties

•Better estimate of uncertainties using f.o.
  Stewart, Tackmann

Consider inclusive jet 
cross section uncertainties

Transform to exclusive jet cross sections

Theoretical cross section on cross sections in jet bins Chicago 2012 LHC Workshop F. Petriello

Error prescription

•A solution to better estimate error using fixed-order results pointed 
out (Stewart, Tackmann 2011)

•In the limit of ln(mH/pT,cut) 
large, σtot and σ≥1 have 
independent expansions

•Gives expected result, that 
Δσveto>Δσtot

•The current prescription 
used in LHC analyses (phrased 
in terms of jet fractions)

✏(p
T,veto

) ⌘ �0(pT,veto

)

�

• Alternative: study uncertainties in efficiencies
  Banfi, Salam, Zanderighi

ε(
p t

,v
et

o)

pt,veto [GeV]

Higgs production (mH = 125 GeV), NNLO

pp, 7 TeV
mH/4 < µR,F < mH

MSTW2008 NNLO PDFs
anti-kt, R = 0.5

scheme a
scheme b
scheme c

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100

ε(
p t

,v
et

o)

pt,veto [GeV]

Z production, NNLO

pp, 7 TeV
mZ/4 < µR,F < mZ

MSTW2008 NNLO PDFs
anti-kt, R = 0.5

scheme a
scheme b
scheme c

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100

Figure 2: Jet-veto efficiency for Higgs (left) and Z-boson production (right) using three
different prescriptions for the NNLO expansion, see Eqs.(4.2a–4.2c). For each prescription,
the thick solid line corresponds to the result obtained with µR = µF = MH/Z/2, while the
band shows the scale uncertainty as obtained with the choices of Eq. (3.14).

section. Insofar as the 1-jet cross section is known only to NLO, in taking the ratio to the
total cross section one can argue that one should also use NLO for the latter, i.e.

ε(pt,veto) = 1−
σNLO

1-jet (pt,veto)

σ0 + σ1
. (4.3)

It is straightforward to verify that this then leads to Eq. (4.2b). This procedure also
coincides with the one adopted in event-shape studies in DIS and hadron-hadron collisions
(σ2 is not even known in the latter case). Option (c) is also well motivated, since it is
a strict fixed order expansion of the ratio, so no uncontrolled terms beyond NNLO are
included. This is the prescription that is usually adopted in e+e− event-shape and jet-rate
studies.

While other possibilities are also equally valid, the above three schemes capture a
substantial part of the freedom that one has in writing the series. The size of the differences
between them is one way to estimate the associated theoretical uncertainty and goes beyond
the usual variation of scales.

4.2 Numerical results

Figure 2 shows the NNLO results for the jet-veto efficiency in the 3 schemes discussed
above. Each scheme is displayed as a band corresponding to the envelope of the scale
variations as in Eq. (3.14), together with a solid line for the prediction with the central
scale choice.

In the case of Higgs production (left-hand plot) the bands barely overlap and, in the
region of interest, pt,veto ∼ 25 − 30 GeV, the three predictions differ considerably, with

11

Different schemes (formally equivalent definitions at NNLO) : 
Envelope from spread in central values agrees with ST

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Higgs + 0 Jets

For example, at LHC for mH = 165 GeV and Ecm = 7 TeV

⇥total = (3.32 pb)
⇥
1 + 9.5 �s + 35 �2

s + O(�3
s)

⇤

⇥�1

�
pjet
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⇥
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.

Naive scale variation in exclusive
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T ) underestimates
uncertainties due to cancellations
between different series
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large logarithmic corrections 0
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FIG. 1: Perturbative predictions for H+0 jets (upper left panel), WW +0 jets (lower left panel), H+1 jet with pjetT1 ≥ 30GeV
(upper right panel), and H + 1 jet with pjetT1 ≥ 120GeV (lower right panel). Central values are shown by the blue solid curves,
naive scale variation in the exclusive jet bin by the green dashed and dotted curves, and the result of combining independent
inclusive uncertainties to get the jet bin uncertainty by the outer red solid curves.

Since both NLO and NNLO results for σ0(pcutT ) are
available, it is also useful to consider the convergence,
which we show in Fig. 2 for the Tevatron (top row) and
the LHC at 7TeV (bottom row). In the left panels we
use naive the scale variation, directly varying the scales
in σ0(pcutT ) to estimate the uncertainty, while in the right
panels we again propagate the uncertainties from the in-
clusive cross sections. As we lower pcutT , the naive scale
variation uncertainty estimate decreases at both NLO
and NNLO, and eventually becomes very small when
the curves pinch and the uncertainty is clearly under-
estimated. In contrast the inclusive scale variation gives
realistic uncertainties for all values of pcutT . In particular,
there is considerable uncertainty for small pcutT where the
summation of logarithms is important.

B. Higgs + 1 Jet

As our next example we consider the 1-jet bin in Higgs
production from gluon fusion. This jet bin is defined by

two cuts, one which ensures that the jet with the largest
pT is outside the 0-jet bin, pjetT1 ≥ pcutT1 , and one which
ensures that the jet with the next largest pT is restricted,
pjetT2 ≤ pcutT , so that we do not have 2 or more jets. The
1-jet cross section can be computed as a difference of
inclusive cross sections with these cuts,

σ1 = σ≥1

(
pjetT1 ≥ pcutT1

)
− σ≥2

(
pjetT1 ≥ pcutT1 , p

jet
T2 ≥ pcutT

)
.

(19)
For convenience we adopt the notation that pcutT is always
used for the cutoff that determines the upper boundary
of the jet bin under consideration, which gives the analog
of the L dependent terms in Eq. (10).

The inclusive cross section σ≥1 that includes the 1-
jet bin exhibits large perturbative corrections, much as
σtotal does for the 0-jet bin. For σ≥1 the large corrections
are caused in part by the large double logarithmic series
in ln(pjetT1/mH), but remains predominantly independent

of the large double logarithms of L = ln(pjetT2/mH) which
control the series for σ≥2. With µf = µr = mH/2, mH =

green lines

red lines

Scale Variation

agree when 
cut is turned 

off

these plots only vary µR = µF (varying µF alone is quite small for Higgs)

Introduction Counting Jets at Fixed Order Resummation for Higgs + 0 Jets at NNLL+NNLO

Perturbative Structure of Jet Cross Sections
[Stewart, FT, arXiv:1107.2117]
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 NNLL+NNLO jet veto efficiencies 

• reduction in efficiency uncertainty
• HqT-Reweighted POWHEG agrees with central 
           value (might not be reliable for uncertainty)

Banfi, Monni, Salam, Zanderighi (2012)
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FIG. 2. Comparison of NNLO, NLL+NNLO and NNLL+NNLO results for jet-veto efficiencies for Higgs (left) and Z-boson
(right) production at the 8 TeV LHC. The Higgs plot includes the result from a POWHEG (revision 1683) [20, 40] plus Pythia
(6.426) [17, 41] simulation in which the Higgs-boson pt distribution was reweighted to match the NNLL+NNLO prediction
from HqT 2.0 [7] as in [21]. The lower panels show results normalised to the central NNLL+NNLO efficiencies.

Our central predictions have µR = µF = Q = M/2 and
scheme a matching, with MSTW2008NNLO PDFs [54].
We use the anti-kt [29] jet-algorithm with R = 0.5, as
implemented in FastJet [55]. For the Higgs case we use
the large mtop approximation and ignore bb̄ fusion and
b’s in the gg → H loops (corrections beyond this approx-
imation have a relevant impact [16, 56]). To determine
uncertainties we vary µR and µF by a factor of two in
either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintain-
ing central µR,F values, we also vary Q by a factor of
two and change to matching schemes b and c. Our final
uncertainty band is the envelope of these variations. In
the fixed-order results, the band is just the envelope of
µR,F variations.

The results for the jet-veto efficiency in Higgs and Z-
boson production are shown in Fig. 2 for 8 TeV LHC
collisions. Compared to pure NNLO results, the cen-
tral value is slightly higher and for Higgs production, the
uncertainties reduced, especially for lower pt,veto values.
Compared to NNLO+NLL results [21], the central values
are higher, sometimes close to edge of the NNLO+NLL
bands; since the NNLO+NLL results used the same ap-
proach for estimating the uncertainties, this suggests that
the approach is not unduly conservative. In the Higgs
case, the NNLO+NNLL uncertainty band is not particu-
larly smaller than the NNLO+NLL one. This should not
be a surprise, since [21] highlighted the existence of pos-
sible substantial corrections beyond NNLL and beyond
NNLO. For the Higgs case, we also show a prediction
from POWHEG [20, 40] interfaced to Pythia 6.4 [17] at
parton level (Perugia 2011 shower tune [41]), reweighted

to describe the NNLL+NNLO Higgs-boson pt distribu-
tion from HqT (v2.0) [7], as used by the LHC experi-
ments. Though reweighting fails to provide NNLO or
NNLL accuracy for the jet veto, for pt,veto scales of prac-
tical relevance, the result agrees well with our central
prediction. It is however harder to reliably estimate un-
certainties in reweighting approaches than in direct cal-
culations.
Finally, we provide central results and uncertainties

for the jet-veto efficiencies and 0-jet cross sections (in
pb) with cuts (in GeV) like those used by ATLAS and
CMS, and also for a larger R value:

R pt,veto ε(7 TeV) σ(7 TeV)
0-jet ε(8 TeV) σ(8 TeV)

0-jet

0.4 25 0.63+0.07
−0.05 9.6+1.3

−1.1 0.61+0.07
−0.06 12.0+1.6

−1.4

0.5 30 0.68+0.06
−0.05 10.4+1.2

−1.1 0.67+0.06
−0.05 13.0+1.5

−1.5

1.0 30 0.64+0.03
−0.05 9.8+0.8

−1.1 0.63+0.04
−0.05 12.2+1.1

−1.4

Interestingly, the R = 1 results have reduced upper un-
certainties, due perhaps to the smaller value of the NNLL
f(R) correction (a large f(R) introduces significant Q-
scale dependence). The above results are without a ra-
pidity cut on the jets; the rapidity cuts used by ATLAS
and CMS lead only to small, < 1%, differences [21].
For the 0-jet cross sections above, we used total

cross sections at 7 TeV and 8 TeV of 15.3+1.1
−1.2 pb and

19.5+1.4
−1.5 pb respectively [57, 58] (based on results in-

cluding [45–49]) and took their scale uncertainties to be
uncorrelated with those of the efficiencies. Symmetris-
ing uncertainties, we find correlation coefficients between
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FIG. 2. Comparison of NNLO, NLL+NNLO and NNLL+NNLO results for jet-veto efficiencies for Higgs (left) and Z-boson
(right) production at the 8 TeV LHC. The Higgs plot includes the result from a POWHEG (revision 1683) [20, 40] plus Pythia
(6.426) [17, 41] simulation in which the Higgs-boson pt distribution was reweighted to match the NNLL+NNLO prediction
from HqT 2.0 [7] as in [21]. The lower panels show results normalised to the central NNLL+NNLO efficiencies.

Our central predictions have µR = µF = Q = M/2 and
scheme a matching, with MSTW2008NNLO PDFs [54].
We use the anti-kt [29] jet-algorithm with R = 0.5, as
implemented in FastJet [55]. For the Higgs case we use
the large mtop approximation and ignore bb̄ fusion and
b’s in the gg → H loops (corrections beyond this approx-
imation have a relevant impact [16, 56]). To determine
uncertainties we vary µR and µF by a factor of two in
either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintain-
ing central µR,F values, we also vary Q by a factor of
two and change to matching schemes b and c. Our final
uncertainty band is the envelope of these variations. In
the fixed-order results, the band is just the envelope of
µR,F variations.

The results for the jet-veto efficiency in Higgs and Z-
boson production are shown in Fig. 2 for 8 TeV LHC
collisions. Compared to pure NNLO results, the cen-
tral value is slightly higher and for Higgs production, the
uncertainties reduced, especially for lower pt,veto values.
Compared to NNLO+NLL results [21], the central values
are higher, sometimes close to edge of the NNLO+NLL
bands; since the NNLO+NLL results used the same ap-
proach for estimating the uncertainties, this suggests that
the approach is not unduly conservative. In the Higgs
case, the NNLO+NNLL uncertainty band is not particu-
larly smaller than the NNLO+NLL one. This should not
be a surprise, since [21] highlighted the existence of pos-
sible substantial corrections beyond NNLL and beyond
NNLO. For the Higgs case, we also show a prediction
from POWHEG [20, 40] interfaced to Pythia 6.4 [17] at
parton level (Perugia 2011 shower tune [41]), reweighted

to describe the NNLL+NNLO Higgs-boson pt distribu-
tion from HqT (v2.0) [7], as used by the LHC experi-
ments. Though reweighting fails to provide NNLO or
NNLL accuracy for the jet veto, for pt,veto scales of prac-
tical relevance, the result agrees well with our central
prediction. It is however harder to reliably estimate un-
certainties in reweighting approaches than in direct cal-
culations.
Finally, we provide central results and uncertainties

for the jet-veto efficiencies and 0-jet cross sections (in
pb) with cuts (in GeV) like those used by ATLAS and
CMS, and also for a larger R value:

R pt,veto ε(7 TeV) σ(7 TeV)
0-jet ε(8 TeV) σ(8 TeV)

0-jet

0.4 25 0.63+0.07
−0.05 9.6+1.3

−1.1 0.61+0.07
−0.06 12.0+1.6

−1.4

0.5 30 0.68+0.06
−0.05 10.4+1.2

−1.1 0.67+0.06
−0.05 13.0+1.5

−1.5

1.0 30 0.64+0.03
−0.05 9.8+0.8

−1.1 0.63+0.04
−0.05 12.2+1.1

−1.4

Interestingly, the R = 1 results have reduced upper un-
certainties, due perhaps to the smaller value of the NNLL
f(R) correction (a large f(R) introduces significant Q-
scale dependence). The above results are without a ra-
pidity cut on the jets; the rapidity cuts used by ATLAS
and CMS lead only to small, < 1%, differences [21].
For the 0-jet cross sections above, we used total

cross sections at 7 TeV and 8 TeV of 15.3+1.1
−1.2 pb and

19.5+1.4
−1.5 pb respectively [57, 58] (based on results in-

cluding [45–49]) and took their scale uncertainties to be
uncorrelated with those of the efficiencies. Symmetris-
ing uncertainties, we find correlation coefficients between

~10-13%

Recent progress on resummation for jet veto (H+ 0jet, H+1jet, H+ n jets)
Berger, Marcantonni, Stewart, Tackmann, Waalewijn
Liu, Petriello
Becher, Neubert
Tackmann, Walsh, Zuberi
Bernlochner, Gangal, Gillbert, Tackmann



Decay : Branching ratios (and partial widths)

ΓH→Z∗Z∗→4f = 3 · ΓH→νeν̄eνµν̄µ + 3 · ΓH→e−e+µ−µ+ + 9 · ΓH→νeν̄eµ−µ+

+ 3 · ΓH→νeν̄eνeν̄e + 3 · ΓH→e−e+e−e+

+ 6 · ΓH→νeν̄euū + 9 · ΓH→νeν̄edd̄ + 6 · ΓH→uūe−e+ + 9 · ΓH→dd̄e−e+

+ 1 · ΓH→uūcc̄ + 3 · ΓH→dd̄ss̄ + 6 · ΓH→uūss̄ + 2 · ΓH→uūuū

+ 3 · ΓH→dd̄dd̄ ,

ΓWW/ZZ−int. = 3 · ΓH→νee+e−ν̄e − 3 · ΓH→νeν̄eµ−µ+ − 3 · ΓH→νee+µ−ν̄µ

+ 2 · ΓH→ud̄dū − 2 · ΓH→uūss̄ − 2 · ΓH→ud̄sc̄ .

2.1.2 BR Results for Higgs masses
In this section we provide results for the BRs of the SM Higgs boson, using a particularly fine grid of
mass points close to MH = 126 GeV. The results are generated and presented in complete analogy to
the predictions in Refs. [2], including the error estimates for each BR. In the error estimates, we have
identified and removed inconsistencies in the calculation of the numbers presented in Refs. [2]. The
corresponding changes in the error estimate are at the level of one percent for mH > 135 GeV. For
mH > 500 GeV the changes increase for some decay modes, in particular for H → tt. The central
values of the BRs are not affected.

The fermionic decay modes are shown in Table 2 to Table 8. The bosonic decay modes together
with the total width are given in Table 9 to Table 15. BRs and error estimates for H → WW/ZZ → 4f
are shown for various specific four-fermion final states and combinations of those in Table ??–Table ??.
The same information is also presented graphically in Figure 1 for the low-mass region (left) and for the
full mass range (right). References to the Tables and plots to be added!
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Fig. 1: Higgs branching ratios and their uncertainties for the low mass range (left) and for the full mass range
(right).

2.1.3 BR Correlations for Higgs masses close to 126 GeV
In this section, we focus on the error correlations for the different BRs. The reason for the correlations is
two-fold: Varying the input parameters within their error bands will induce shifts of the different partial
widths and the resulting BRs in a correlated way. Moreover, there is trivial correlation between the BRs

4

consider the simultaneous scaling of all 4-fermion partial widths. The derived individual THUs for each
branching ratios are added linearly to obtain the corresponding total THU.

For our calculations, the input parameter set as defined in Appendix A of Ref. [1] has been used
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derive the pole masses MZ = 91.15349 GeV and MW = 80.36951 GeV which are used as input. The
gauge-boson widths have been calculated at NLO from the other input parameters resulting in ΓZ =
2.49581 GeV and ΓW = 2.08856 GeV. It should be noted again that for our numerical analysis we
have used the one-loop pole masses for the charm and bottom quarks and their uncertainties, since these
values do not exhibit a significant dependence on the value of the strong coupling constant αs in contrast
to theMS masses [13]. To be precise, we useMb = 4.49 GeV,Mc = 1.42 GeV, andMs = 0.10 GeV.
The small shifts with respect to the charm- and strange-quark masses used in Ref. [2] do not affect the
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WW stand
for the partial widths to ZZ and WW calculated with HDECAY, while ΓProph.

4f represents the partial
width of H → 4f calculated with PROPHECY4F. The latter can be split into the decays into ZZ,WW,
and the interference,
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e.g., Breit-Wigner lineshape deformed by decay amplitude above threshold
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Figure 2: MWW distributions for gg (→ H) → W−W+ → !ν̄!!̄ν! in pp collisions at√
s = 8TeV for MH = 125GeV and ΓH = 0.004434GeV calculated at LO with gg2VV [68].

The ZWA distribution (black, dashed) as defined in Eq. (11) in the main text, the off-shell
Higgs distribution (black, solid), the dσ(|MH + Mcont|2)/dMWW distribution (blue) and
the dσ(|MH|2+ |Mcont|2)/dMWW distribution (red) are shown. Standard cuts are applied:
pT ! > 20GeV, |η!| < 2.5, p/T > 30GeV, M!! > 12GeV. Differential cross sections for a
single lepton flavor combination are displayed. No flavor summation is carried out for
charged leptons or neutrinos. Further details can be found in Ref. [31].

errors of O(10%) can therefore occur in H → V V decay modes, despite ΓH/MH < 10−4.13

We emphasize that H → V V modes in Higgs production channels other than gluon fusion
also exhibit an enhanced off-shell tail, since the effect is caused by the decay amplitude.

Evidently, the ZWA caveat also applies to Monte Carlo generators that approximate
off-shell effects with an ad hoc Breit-Wigner reweighting of the on-shell propagator (cf. Eq.
(11)). Furthermore, the ZWA limitations are relevant for the extraction of Higgs couplings,
which is initially being performed using the ZWA. The findings of Ref. [31] make clear that
off-shell effects have to be included in future Higgs couplings analyses.

Above the V V threshold, the gg → V V continuum background is large and sizable
signal-background interference (see Fig. 4, left and right) occurs. Resonance-continuum
interference in gg (→ H) → V V has been studied in Refs. [31, 69–78] and for related pro-
cesses in Refs. [79–85].14 Due to the enhanced Higgs cross section above the V V threshold,

13For gg → H → γγ the effect is drastically reduced and confined to the region Mγγ between 157 GeV
and 168 GeV, where the distribution is already five orders of magnitude smaller than in the resonance
region.

14For studies of the qq̄ and gg continuum background (see Fig. 4, center and right), we refer the reader
to Refs. [86–93] and references therein.
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• Finite width effects can be sizable in some decay 
channels even for a light Higgs
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cuts: pT ! > 20GeV, |η!| < 2.5, 76GeV < M!! < 106GeV, p/T > 10GeV. Other details as
in Fig. 2.
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Figure 4: Representative Feynman graphs for the Higgs signal process (left) and the qq̄-
(center) and gg-initiated (right) continuum background processes.

integrated cross sections can be affected by O(10%) signal-background interference effects,
which are hence also displayed in Figs. 2 and 3.

In the vicinity of the Higgs resonance, finite-width and Higgs-continuum interference
effects are negligible for gg (→ H) → V V if MH # 2MV , as shown in Fig. 5 for gg (→
H) → W−W+ → !ν̄!!̄ν!. For weak boson decays that permit the reconstruction of the
Higgs invariant mass, the experimental procedure focuses on the Higgs resonance region
and for MH # 2MV the enhanced off-shell region is thus typically excluded.

For H → V V channels that do not allow to reconstruct the Higgs invariant mass, the
tail contribution can nevertheless be reduced significantly by means of optimized selection
cuts. In Table 1, we demonstrate this for gg (→ H) → W−W+ → !ν̄!!̄ν!. Here, the
search selection has additional cuts, in particular an upper bound on the invariant mass of
the observed dilepton system, which significantly reduce the contribution from the region
with MWW $ 2MW . The result is a substantial mitigation of the off-shell (see Table 1)
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H) → W−W+ → !ν̄!!̄ν!. For weak boson decays that permit the reconstruction of the
Higgs invariant mass, the experimental procedure focuses on the Higgs resonance region
and for MH # 2MV the enhanced off-shell region is thus typically excluded.

For H → V V channels that do not allow to reconstruct the Higgs invariant mass, the
tail contribution can nevertheless be reduced significantly by means of optimized selection
cuts. In Table 1, we demonstrate this for gg (→ H) → W−W+ → !ν̄!!̄ν!. Here, the
search selection has additional cuts, in particular an upper bound on the invariant mass of
the observed dilepton system, which significantly reduce the contribution from the region
with MWW $ 2MW . The result is a substantial mitigation of the off-shell (see Table 1)

9

rections [55–57] enhanced by soft-gluon resummation at next-to-next-to-leading logarithmic
level [58,59] and beyond [60]. In addition to higher-order QCD corrections, electroweak cor-
rections have been computed and found to be at the 1–5% level [61–63]. Further references
on all aspects of Higgs physics at the LHC can be found in Refs. [64, 65].

A comparison of the ZWA and finite-width Higgs propagator schemes in inclusive Higgs
production and decay in gluon fusion was carried out in Refs. [66, 67] for Higgs masses
between 120 and 800 GeV. Overall, good agreement with the expected uncertainty of
O(ΓH/MH) was found. In particular, for light Higgs masses (MH < 300 GeV) a relatively
small error of O(1%) was found [66], leading to the conclusion that the ZWA should be an
adequate treatment for a light Higgs boson where the Higgs width is very small compared
to its mass [67]. Curiously, a closer inspection of the results for MH = 120 GeV reveal that
the deviation between ZWA and fixed-width Breit-Wigner scheme (0.5%) is two orders of
magnitude larger than ΓH/MH (4 ·10−5). Based on the discussion in Sec. 2, it is suggestive
to interpret this as evidence for a significant deformation of the Breit-Wigner lineshape
for a light Higgs boson. Such deformations were first predicted and thoroughly studied in
Ref. [31]. They can be traced back to the dependence of the Higgs decay amplitude Md

on the Higgs virtuality q2 for different decay modes (cf. Eqs. (5) and (7)). One has, for
instance,12

|Md(H → f f̄)|2 ∼ M2
f q

2 for
√

q2 ! 2Mf , (9)

|Md(H → V V )|2 ∼ (q2)2 for
√

q2 ! 2MV , (10)

for Higgs boson decays to fermions f or weak bosons V . For the H → WW and H → ZZ
decay modes of a light Higgs boson with resonance below the V V threshold, a remarkable
effect occurs above the V V threshold (far away from the resonance peak): the leading
(q2)−2 dependence of the off-shell squared Higgs propagator |D|2 and the leading (q2)2 de-
pendence of |Md|2 largely compensate. The Higgs lineshape is therefore strongly enhanced
for (q2)1/2 > 2MV compared to the Breit-Wigner expectation, which is given by

(

dσ

dMV V

)

ZWA

= σH,ZWA
MHΓH

π

2MV V

(M2
V V −M2

H)
2 + (MHΓH)2

. (11)

The Breit-Wigner expectation (HZWA) and the enhanced off-shell distribution (Hoffshell) are
illustrated in Figs. 2 and 3 using the gg → H → W−W+ → #ν̄!#̄ν! and gg → H → ZZ →
##̄ν!ν̄! processes, respectively. The differential cross section in the plateau-like finite-width
tail is approximately two to three orders of magnitude smaller than in the resonance region.
However, the plateau extends from the V V threshold to beyond 600 GeV. The integrated
cross section in this region far from resonance thus contributes O(10%) to the total finite-
width cross section, more specifically, 16% and 37% in Figs. 2 and 3, respectively. ZWA

12Here, ! implies above, but not too far above threshold.
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Integration over large kinematical range enhances off-shell effects
and interference with background

Table 1: Cross sections for gg (→ H) → W−W+ → !ν̄!!̄ν! and MH = 125GeV with
standard cuts, Higgs search cuts and additional cut on the transverse mass MT defined in
Eq. (12) in the main text. Standard cuts: as in Fig. 2. Higgs search cuts: standard cuts
and M!! < 50GeV, ∆φ!! < 1.8. The zero-width approximation (ZWA) and off-shell Higgs
cross sections, the gg continuum cross section and the sum of off-shell Higgs and continuum
cross sections including interference are given. The accuracy of the ZWA and the impact
of off-shell effects are assessed with R = σH,ZWA/σH,offshell. The integration error is given
in brackets. Other details as in Fig. 2.

gg (→ H) → W−W+ → !ν̄!!̄ν!, σ [fb], pp,
√
s = 8 TeV, MH = 125 GeV

selection cuts HZWA Hoffshell cont |Hofs+cont|2 R

standard cuts 2.707(3) 3.225(3) 10.493(5) 12.241(8) 0.839(2)

Higgs search cuts 1.950(1) 1.980(1) 2.705(2) 4.497(3) 0.9850(7)

0.75MH < MT < MH 1.7726(9) 1.779(1) 0.644(1) 2.383(2) 0.9966(8)

was used to motivate a review of on-mass-shell approximations. The zero-width approx-
imation, a.k.a. narrow-width approximation, restricts the intermediate unstable particle
state to the mass shell and, when combined with the decorrelation approximation, fully
factorizes the production and decay subprocesses. Both approximations are implicitly ap-
plied when extracting branching ratios from collider data. The ZWA strongly reduces the
complexity of calculations of cross sections for many-particle processes in Standard Model
extensions and/or higher-order corrections. The uncertainty of the ZWA is typically of
O(Γ/M), where M (Γ) is the mass (width) of the unstable particle, but can be much
larger in special cases where a significant modification of the Breit-Wigner lineshape oc-
curs. Such a modification can be induced by the q2-dependence of production and decay

Table 2: Cross sections for gg (→ H) → ZZ → !!̄ν!ν̄! and MH = 125GeV without and
with transverse mass cut. Applied cuts: pT ! > 20 GeV, |η!| < 2.5, 76 GeV < M!! < 106
GeV, p/T > 10 GeV. MT is defined in Eq. (12) in the main text. Other details as in Table
1.

gg (→ H) → ZZ → !!̄ν!ν̄!, σ [fb], pp,
√
s = 8 TeV, MH = 125 GeV

MT cut HZWA Hoffshell cont |Hofs+cont|2 R

none 0.1593(2) 0.2571(2) 1.5631(7) 1.6376(9) 0.6196(7)

MT < MH 0.1593(2) 0.1625(2) 0.4197(5) 0.5663(6) 0.980(2)
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Signal-background interference effects for gg → H → W+W− beyond leading order
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We study the effect of QCD corrections to the gg → H → W+W− signal-background interference
at the LHC for a heavy Higgs boson. We construct a soft-collinear approximation to the NLO and
NNLO corrections for the background process, which is exactly known only at LO. We estimate its
accuracy by constructing and comparing the same approximation to the exact result for the signal
process, which is known up to NNLO, and we conclude that we can describe the signal-background
interference to better than O(10%) accuracy. We show that our result implies that, in practice, a
fairly good approximation to higher-order QCD corrections to the interference may also be obtained
by rescaling the known LO result by a K-factor computed using the signal process.

I. INTRODUCTION

Search for the Higgs boson at the LHC has been a
remarkable success so far. Indeed, both the ATLAS
and CMS collaborations have announced the discovery
of a new boson, whose properties are compatible with
that of the Standard Model Higgs particle, with mass
mh ≈ 125 GeV. Both collaborations also excluded ad-
ditional Higgs-like bosons in a large mass range mh !
600 GeV [1, 2]. The interpretation of the excesses ob-
served in various production and decay channels, as orig-
inating from a single spin-zero particle, was made possi-
ble by detailed theoretical predictions for the Higgs boson
production and decay rates, see Ref. [3] for an overview.

However, these experimental results do not imply that
there are no additional Higgs-like bosons with masses
600 GeV ! mh ! 1 TeV. In fact, the search for such
particles is well underway [4]. In the Standard Model, as
the Higgs boson becomes heavier, its total decay width
grows rapidly Γh ∼ m3

h thanks to contributions of the
longitudinal electroweak bosons: for mh ∼ 600 GeV, the
width is close to 120 GeV. Since the finite-width effects
change the distribution of the invariant masses of the de-
cay products of the Higgs boson, their understanding is
important for developing experimental search strategies.

There are two finite width effects that influence the
Higgs boson lineshape. First, the Higgs propagator must
assume the Breit-Wigner form in the resonant regime
1/(s−m2

h) → 1/(s−m2
h+ imhΓh). While this modifica-

tion is literally correct for a light (and therefore narrow)
Higgs boson, for a heavy Higgs, it must be modified; the
proper way to do this was subject to a significant discus-
sion in recent literature, see Refs. [5, 6] and references
therein. The second effect is the interference with the
background. Note that, in principle, the two effects are
not completely independent of each other since modifica-
tions of the Breit-Wigner form for the propagator change
the very definition of the “background” in the resonance

region, but discussion of these subtleties is beyond the
scope of this paper.
Our goal is to consider the interference of the signal

process gg → H → W+W− and the background process
gg → W+W− for a heavy Higgs boson1. This interfer-
ence was first computed at leading order in Refs. [7, 8].
Although the gg → W+W− amplitude appears at one
loop, it is enhanced at the LHC by the large gluon flux,
making the interference effects non-negligible. An obvi-
ous shortcoming of Refs. [7, 8] is that their analysis of the
interference is performed at leading order in perturbative
QCD as far as the Higgs boson signal is concerned. This
is unfortunate since, for the Higgs boson signal, higher
order QCD corrections are extremely important, as they
enhance the total rate by more than a factor two [9–11].
It is therefore interesting to explore their impact on the
signal-background interference.
Such an endeavor, however, is highly non-trivial. In-

deed, a full NLO and NNLO QCD calculation of back-
ground amplitudes requires evaluation of two- and three-
loop 2 → 2 Feynman diagrams which is beyond the reach
of the current computational technology. On the other
hand, it is well-known [12] that for the Higgs boson sig-
nal a large fraction of radiative corrections is captured
by the soft-collinear approximation. Since this approxi-
mation should be particularly suitable for the description
of a heavy Higgs boson, we construct a soft-collinear ap-
proximation for the entire gg → W+W− amplitude that
includes both the signal and the background and study
the impact of these corrections on the interference.
This paper is organized as follows. In Section II we

sketch the construction of the soft-collinear approxima-
tion. In Section III we present numerical results. We
conclude in Section IV.

1 For the light mh = 125 GeV Higgs boson the interference is
negligible if proper signal-selection criteria are applied [7].

Use soft-virtual approximation at NNLO (assuming two-loop 
Higgs coefficient for background) 

QCD corrections enhance interference, 
similar to enhancement for signal

4

√
s = 8 TeV

√
s = 13 TeV

LO NLO NNLO LO NLO NNLO

σH 0.909 1.99(5) 2.6(1) 3.77 8.1(2) 10.3(5)

σHi 1.188 2.6(1) 3.4(3) 4.56 9.7(4) 12.5(9)

σH/σLO
H — 2.19(5) 2.8(1) — 2.14(5) 2.7(1)

σHi/σLO
Hi — 2.2(1) 2.9(2) — 2.13(9) 2.8(2)

TABLE II: Results (in fb) for the Higgs-only cross sec-
tion σH and the signal+interference cross section σHi, with
mh = 600 GeV. No cuts on the final state applied. The errors
represent the uncertainty on the soft-collinear approximation
and on the unknown background coefficients, estimated as
explained in the text.

in which only powers of lnN and constant terms are kept.
Both approximations reproduce the exact result to

O(3%) or better in all configurations. At
√
s = 8 TeV,

where the soft-collinear terms are expected to domi-
nate [27], our soft-collinear approximation reproduces the
exact result to better thanO(2%), while at higher energy,√
s = 13 TeV, the agreement deteriorates slightly, be-

cause non-soft terms become relatively more important.
However, whereas at NNLO the soft-collinear approxi-
mation is more accurate than the N -soft, at NLO the
opposite happens. This occurs because numerically the
N -soft approximation happens to be closer to the exact
result than our improved soft-collinear one in the small-
N limit. Since the small-N limit is beyond the region of
applicability for both of these approximations, we con-
sider this feature to be accidental but note that one can
improve both of these approximations by matching them
to the correct small-N limit [29]. In what follows we use
the soft-collinear approximation as the default and take
the spread of values between the soft-collinear and the
N -soft approximations as an estimate of the uncertainty
due to deficiencies of these approximations in the small-
N region.
We have also checked the reliability of our approxi-

mation for differential distributions when decays are in-
cluded. Indeed, at NLO accuracy, we find that our ap-
proximate results for the lepton pt and rapidity distribu-
tions and for the lepton invariant mass mll distribution
are in good agreement with the full result obtained from
MCFM [28].
Having assessed the accuracy of our approximation, we

can now apply it to study higher order corrections to the
signal-background interference. As explained in the pre-
vious Section, we need the exact leading order prediction
for the interference. We extract it from Ref. [7], as im-
plemented in MCFM. For the Higgs boson signal, we use
the exact expression obtained as discussed above. For the
background, we include the contributions of all the three
quark generations, see [7] for details. We also need the
infrared-regulated virtual cross section c1, and the analo-
gous NNLO coefficient c2. As already mentioned, we take
the signal values for these coefficients c̄1,2 as a reference,

√
s = 8 TeV

√
s = 13 TeV

LO NLO NNLO LO NLO NNLO

σH 0.379 0.83(2) 1.07(5) 1.55 3.29(8) 4.2(2)

σHi 0.427 0.93(3) 1.20(7) 1.66 3.5(1) 4.5(2)

σH/σLO
H — 2.19(5) 2.8(1) — 2.13(5) 2.7(1)

σHi/σLO
Hi — 2.19(7) 2.8(2) — 2.12(6) 2.7(1)

TABLE III: Same as Table II, but with Higgs-based cuts on
the final state. See text for details.

and study the impact of virtual corrections on the inter-
ference by varying c1,2 in the range −5c̄1,2 < c1,2 < 5c̄1,2.
We first discuss the impact of QCD corrections on

the inclusive cross section. Following Ref. [7], we
compare the signal-only cross section σH with the
background-subtracted cross section σHi ≡ σgg→WW −
σgg→WW |bg only, which includes interference effects. We
report our results for the signal only cross section σH and
the signal+interference cross section σHi for c1,2 = c̄1,2
in Table II. To facilitate the comparison with the results
of Ref. [7], LO results are computed using NLO PDFs.
For the signal, the quoted error is obtained by comparing
our soft-collinear approximation to the N -soft approxi-
mation. For the background, we also consider the ad-
ditional uncertainty coming from independently varying
the c1,2 coefficients for the first two and the third gener-
ation in the −5c̄1,2 < c1,2 < 5c̄1,2 range. This leads to an
uncertainty of about 6% on the interference predictions
which, combined with the uncertainty of the soft approx-
imation, gives an overall uncertainty of about 8− 9% at
NNLO, see Table II. This uncertainty is of same order
of magnitude as the current uncertainties in the Higgs
production rate σNNLO related to higher-order QCD ra-
diative corrections, PDF and αs uncertainties etc, see [3].
We conclude that our approach to estimate higher order
corrections to the signal-background interference in the
Higgs production offers a robust framework and adequate
phenomenological precision.
We turn to a discussion of the impact of the interfer-

ence in a more realistic setup, by imposing selection cuts
on leptons and neutrinos. Apart from the standard ac-
ceptance cuts on the lepton rapidity ηl, lepton transverse
momentum pt and missing energy /Et,

|ηl| < 2.5, pt > 25 GeV, /Et > 20 GeV (7)

we impose additional signal-enhancement cuts, linearly
extrapolating numerical values given in Ref. [30]. To this
end, we require at least one lepton with pt > 130 GeV,
and impose the following cuts on the lepton invariant
mass mll, azimuthal separation ∆φll of the two leptons
and transverse mass of the W+W− pair m⊥:

mll < 500 GeV, ∆φll < 3.05,

120 GeV < m⊥ < mh. (8)

We note that we have validated the soft-collinear ap-
proximation at NLO QCD against MCFM for the differ-

4

√
s = 8 TeV

√
s = 13 TeV

LO NLO NNLO LO NLO NNLO

σH 0.909 1.99(5) 2.6(1) 3.77 8.1(2) 10.3(5)

σHi 1.188 2.6(1) 3.4(3) 4.56 9.7(4) 12.5(9)

σH/σLO
H — 2.19(5) 2.8(1) — 2.14(5) 2.7(1)

σHi/σLO
Hi — 2.2(1) 2.9(2) — 2.13(9) 2.8(2)

TABLE II: Results (in fb) for the Higgs-only cross sec-
tion σH and the signal+interference cross section σHi, with
mh = 600 GeV. No cuts on the final state applied. The errors
represent the uncertainty on the soft-collinear approximation
and on the unknown background coefficients, estimated as
explained in the text.

in which only powers of lnN and constant terms are kept.
Both approximations reproduce the exact result to

O(3%) or better in all configurations. At
√
s = 8 TeV,

where the soft-collinear terms are expected to domi-
nate [27], our soft-collinear approximation reproduces the
exact result to better thanO(2%), while at higher energy,√
s = 13 TeV, the agreement deteriorates slightly, be-

cause non-soft terms become relatively more important.
However, whereas at NNLO the soft-collinear approxi-
mation is more accurate than the N -soft, at NLO the
opposite happens. This occurs because numerically the
N -soft approximation happens to be closer to the exact
result than our improved soft-collinear one in the small-
N limit. Since the small-N limit is beyond the region of
applicability for both of these approximations, we con-
sider this feature to be accidental but note that one can
improve both of these approximations by matching them
to the correct small-N limit [29]. In what follows we use
the soft-collinear approximation as the default and take
the spread of values between the soft-collinear and the
N -soft approximations as an estimate of the uncertainty
due to deficiencies of these approximations in the small-
N region.
We have also checked the reliability of our approxi-

mation for differential distributions when decays are in-
cluded. Indeed, at NLO accuracy, we find that our ap-
proximate results for the lepton pt and rapidity distribu-
tions and for the lepton invariant mass mll distribution
are in good agreement with the full result obtained from
MCFM [28].
Having assessed the accuracy of our approximation, we

can now apply it to study higher order corrections to the
signal-background interference. As explained in the pre-
vious Section, we need the exact leading order prediction
for the interference. We extract it from Ref. [7], as im-
plemented in MCFM. For the Higgs boson signal, we use
the exact expression obtained as discussed above. For the
background, we include the contributions of all the three
quark generations, see [7] for details. We also need the
infrared-regulated virtual cross section c1, and the analo-
gous NNLO coefficient c2. As already mentioned, we take
the signal values for these coefficients c̄1,2 as a reference,

√
s = 8 TeV

√
s = 13 TeV

LO NLO NNLO LO NLO NNLO

σH 0.379 0.83(2) 1.07(5) 1.55 3.29(8) 4.2(2)

σHi 0.427 0.93(3) 1.20(7) 1.66 3.5(1) 4.5(2)

σH/σLO
H — 2.19(5) 2.8(1) — 2.13(5) 2.7(1)

σHi/σLO
Hi — 2.19(7) 2.8(2) — 2.12(6) 2.7(1)

TABLE III: Same as Table II, but with Higgs-based cuts on
the final state. See text for details.

and study the impact of virtual corrections on the inter-
ference by varying c1,2 in the range −5c̄1,2 < c1,2 < 5c̄1,2.
We first discuss the impact of QCD corrections on

the inclusive cross section. Following Ref. [7], we
compare the signal-only cross section σH with the
background-subtracted cross section σHi ≡ σgg→WW −
σgg→WW |bg only, which includes interference effects. We
report our results for the signal only cross section σH and
the signal+interference cross section σHi for c1,2 = c̄1,2
in Table II. To facilitate the comparison with the results
of Ref. [7], LO results are computed using NLO PDFs.
For the signal, the quoted error is obtained by comparing
our soft-collinear approximation to the N -soft approxi-
mation. For the background, we also consider the ad-
ditional uncertainty coming from independently varying
the c1,2 coefficients for the first two and the third gener-
ation in the −5c̄1,2 < c1,2 < 5c̄1,2 range. This leads to an
uncertainty of about 6% on the interference predictions
which, combined with the uncertainty of the soft approx-
imation, gives an overall uncertainty of about 8− 9% at
NNLO, see Table II. This uncertainty is of same order
of magnitude as the current uncertainties in the Higgs
production rate σNNLO related to higher-order QCD ra-
diative corrections, PDF and αs uncertainties etc, see [3].
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Higgs production offers a robust framework and adequate
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on leptons and neutrinos. Apart from the standard ac-
ceptance cuts on the lepton rapidity ηl, lepton transverse
momentum pt and missing energy /Et,
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we impose additional signal-enhancement cuts, linearly
extrapolating numerical values given in Ref. [30]. To this
end, we require at least one lepton with pt > 130 GeV,
and impose the following cuts on the lepton invariant
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12.1.2 Interference signal - background
In the current experimental analysis there are additional sources of uncertainty, e.g. background and
Higgs interference effects [489–493]. As a matter of fact, this interference is partly available and should
not be included as a theoretical uncertainty; for a discussion and results we refer to Refs. [494–496].

Here we will examine the channel gg → ZZ and discuss the associated THU. The background
(continuum gg → ZZ) and the interference are only known at leading order (LO, one-loop) [497]. Here
we face two problems, a missing NLO calculation of the background (two-loop) and the NLO or NNLO
signal at the amplitude level, without which there is no way to improve upon the present LO calculation.

A potential worry, already addressed in Ref. [494], is: should we simply use the full LO calcu-
lation or should we try to effectively include the large (factor two) K -factor to have effective NNLO
observables? There are different opinions since interference effects may be as large or larger than NNLO
corrections to the signal. Therefore, it is important to quantify both effects. Let us consider any distribu-
tion D, i.e.

D =
dσ

dx
x = MZZ or x = pZ

⊥ etc. (209)

where MZZ is the invariant mass of the ZZ -pair and pZ
⊥ is the transverse momentum. We introduce the

following options, see Ref. [91] (S,B and I are shorthands for signal, background and interference):

– additive where one computes

dσNNLO
eff

dx
=

dσNNLO

dx
(S) +

dσLO

dx
(I) +

dσLO

dx
(B) (210)

– multiplicative where one computes

dσNNLO
eff

dx
= KD

[dσLO

dx
(S) +

dσLO

dx
(I)
]
+

dσLO

dx
(B), KD =

dσNNLO

dx (S)
dσLO

dx (S)
, (211)

where KD is the differential K -factor for the distribution. Note that KD accounts for both QCD
and EW higher order effects in the production and in the decay.

– intermediate It is convenient to define

KD = Kgg
D + Krest

D , Kgg
D =

dσNNLO

dx

(
gg → H(g)→ ZZ(g)

)

dσLO

dx

(
gg → H→ ZZ

) (212)

dσNNLO
eff

dx
= KD

dσLO

dx
(S) +

(
Kgg

D

)1/2 dσLO

dx
(I) +

dσLO

dx
(B) (213)

Our recipe for estimating the theoretical uncertainty in the effective NNLO distribution is as follows: the
intermediate option gives the central value, while the band between the multiplicative and the additive
options gives the uncertainty. Note that the difference between the intermediate option and the median
of the band is always small if not far away from the peak where, in any case, any option becomes
questionable.

For an inclusive quantity the effect of the interference, with or without the NNLO K -factor for
the signal, is almost negligible. For distributions this is radically different; referring to the ZZ invariant
mass distribution we can say that, close toMZZ = µH, the uncertainty is small but becomes large in the
rest of the search window [µH − γH , µH + γH]. The effect of the LO interference, w.r.t. LO S + B,
reaches a maximum of +16% before the peak (e.g. at µH = 700 GeV) while our estimate of the scaled
interference (always w.r.t. LO S + B) is 86+7−3% in the same region, showing that NNLO signal
effects are not negligible49.

49Complete set of results, including results for the THU discussed in Sect. 12.1.1, and a code for computing the SM Higgs
complex pole can be found at [498].
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Our recipe for estimating the theoretical uncertainty in the effective NNLO distribution is as follows: the
intermediate option gives the central value, while the band between the multiplicative and the additive
options gives the uncertainty. Note that the difference between the intermediate option and the median
of the band is always small if not far away from the peak where, in any case, any option becomes
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For an inclusive quantity the effect of the interference, with or without the NNLO K -factor for
the signal, is almost negligible. For distributions this is radically different; referring to the ZZ invariant
mass distribution we can say that, close toMZZ = µH, the uncertainty is small but becomes large in the
rest of the search window [µH − γH , µH + γH]. The effect of the LO interference, w.r.t. LO S + B,
reaches a maximum of +16% before the peak (e.g. at µH = 700 GeV) while our estimate of the scaled
interference (always w.r.t. LO S + B) is 86+7−3% in the same region, showing that NNLO signal
effects are not negligible49.
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Agg→H , AH→γγ, Acont do not vary too quickly. Dicus, Willenbrock

“Im” term needs relative phase, resonance vs. continuum.
Resonance-Continuum Interferencein the LHC H → γγ Signal – p.9/20

In search of a phase
Total gg → γγ amplitude

Agg→γγ =
−Agg→HAH→γγ

ŝ − m2
H + imHΓH

+ Acont

Interference term has 2 pieces

δσ̂gg→H→γγ = −2(ŝ − m2
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FIG. 1: The distribution of diphoton invariant masses from the real interference term in eq. (12), as a
function of Mγγ =

√
ŝ, from eq. (10), before including experimental resolution effects. The right panel is a

close-up of the left panel, showing the maximum and minimum near Mγγ = MH ± ΓH/2.

is the gluon-gluon luminosity function, and

D(ŝ) = (ŝ −M2
H)2 +M2

HΓ2
H . (16)

The numerical results below use MH = 125 GeV and ΓH = 4.2 MeV for purposes of presentation,

even though the current experimental indications are for a slightly heavier H. The running MS

fermion masses at Q = MH are taken to be mt = 168.2 GeV, mb = 2.78 GeV, mc = 0.72 GeV,

mτ = 1.744 GeV, and α = 1/127.5. The gluon distribution function g(x) and strong coupling

αS(Q) are taken from the MSTW2008 NLO set [39], with Q2 = ŝ. Because the focus here is on

the shift in the diphoton mass peak, the very small imaginary interference term in eq. (13) and

its 2-loop counterpart discussed in [28] will be neglected here, since they are small and affect the

overall size but not the shape of the invariant mass distribution. Numerical results will be shown

for the 2012 run energy
√
s = 8 TeV, but the results on the shape (as opposed to the size) of the

Mγγ distribution turn out to be nearly independent of the LHC beam energy at leading order.

This is because the
√
s dependence enters only through G(ŝ), which appears in front of both NH

and Nint,Re in eq. (10).

The factor of ŝ−M2
H in Nint,Re is odd about the Higgs peak, making its contribution to the total

cross-section negligible when ŝ is integrated over [27, 28]. However, the same factor implies a slight

excess for Mγγ =
√
ŝ below MH and a slight deficit above, therefore pushing the peak to lower Mγγ

than it would be if interference were absent. This is shown first in the case without any experimental

resolution effects for the photons, in Figure 1. The distribution shown is obtained from the real

interference term in eq. (12), plugged in to eq. (10), after integrating over −1 < z < 1 and dividing

by 2 for identical photons. The distribution shows a sharp peak and dip near Mγγ = MH − ΓH/2

and MH + ΓH/2 respectively, but there are also long tails due to the Breit-Wigner shape. [Using
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around mH , its effect on the total γ γ rate is subdominant.
For the gluon–gluon partonic subprocess, Dicus and Willen-
brock [37] found that the imaginary part of the correspond-
ing one-loop amplitude has a quark mass suppression for
the relevant helicity combinations. Dixon and Siu [36] com-
puted the main contribution of the interference to the cross
section, which originates on the two-loop imaginary part of
the continuum amplitude gg → γ γ . Recently, Martin [1]
showed that even though the real part hardly contributes at
the cross-section level, it has a quantifiable effect on the
position of the diphoton invariant mass peak, producing a
shift of O(100 MeV) towards a lower mass region, once the
smearing effect of the detector is taken into account.

The gg interference channel considered in [1] is not the
only O(α2

S) contribution that has to be taken into account
for a full understanding of the interference term, since other
partonic subprocesses initiated by qg and qq̄ can contribute
at the same order. While these channels are suppressed with
respect to the gg subprocess for the Higgs signal, they dom-
inate the γ γ QCD background, and therefore their contri-
bution to the interference cannot be a priori neglected. At
variance with the gg subprocess that necessarily requests at
least a one-loop amplitude for the background, the contribu-
tion from the remaining channels arises from tree-level am-
plitudes, and can therefore only contribute to the real part of
the interference in Eq. (1).3

In this note we present the results obtained for the re-
maining qg and qq̄ channels, finalizing a full (lowest order)
O(α2

S) calculation of the interference between Higgs dipho-
ton decay amplitude and the corresponding continuum back-
ground. We concentrate on the effect of the new interference
channels on the position of the diphoton invariant mass peak.

The amplitudes of the qg and qq̄ initiated contributions
to the interference were calculated using the Mathematica
package FeynArts [38], and the analytical manipulation to
obtain the final squared matrix element of the complete in-
terference was done with the help of the package FeynCalc
[39]. A sample of the Feynman diagrams for the qg inter-
ference channel are shown in Fig. 1. The diagrams and am-
plitudes of the remaining channels can be obtained by per-
forming the corresponding crossings.

It is worth noticing that, compared to the gg subprocess,
there is an additional parton in the final state in the new
channels. This parton has to be integrated out to evaluate
the impact on the cross section, and its appearance might
provide the wrong impression that the contribution is next-
to-leading order-like. However, since signal and background

3Apart from a small imaginary part originated on the heavy-quark loop
in the Higgs production amplitude that is discarded in this note since
we rely on the effective ggH vertex. There is also an imaginary con-
tribution in the decay process H → γ γ which was included since the
full expression for the vertex was used, but was found to be negligible.

Fig. 1 Sample of Feynman diagrams contributing to the interference

amplitudes develop infrared singularities in different kine-
matical configurations, the interference is finite after phase
space integration and behaves as a true tree-level contribu-
tion, with exactly the same power of the coupling constant as
the one arising from the gluon–gluon interference channel.

For a phenomenological analysis of the results we need
to perform a convolution of the partonic cross section with
the parton density functions. We use the MSTW2008 LO
set [40] (five massless flavors are considered), and the one-
loop expression of the strong coupling constant, setting the
default factorization and renormalization scales equal to the
diphoton invariant mass (µF = µR = Mγ γ ). For the sake of
simplicity, the production amplitudes are computed within
the effective Lagrangian approach for the ggH coupling (re-
lying on the infinite top mass limit), approximation known
to work at the few percent level for the process of inter-
est. The decay into two photons is treated exactly (using
mt = 172.5 GeV, mb = 4.75 GeV, mc = 1.40 GeV [24, 25],
mτ = 1.776 GeV, mW = 80.395 GeV [41]) and we set
α = 1/137. For the continuum background gg → γ γ we
consider five massless flavors. For the Higgs boson we use
mH = 125 GeV and ΓH = 4.2 MeV. For all the histograms
we present in this section, an asymmetric cut is applied
to the transverse momentum of the photons: p

hard(soft)
T ,γ ≥

40(30) GeV. Their pseudorapidity is constrained to |ηγ | ≤
2.5. We also implement the standard isolation prescription
for the photons, requesting that the transverse hadronic en-
ergy deposited within a cone of size R =

√
&φ2 + &η2 <

0.4 around the photon should satisfy pT,had ≤ 3 GeV. Fur-
thermore, we reject all the events with Rγ γ < 0.4. The effect
of the precise definition of the isolation prescription is neg-
ligible since no final state photon–quark singularities appear
at the level of the interference. Therefore, almost the same
results are obtained if the smooth isolation prescription [42]
is implemented.

In Fig. 2 we show the three contributions to the full
signal–background interference as a function of the dipho-
ton invariant mass Mγ γ after having implemented all the
cuts mentioned above. The gg term (solid line) represents
the dominant channel, while the qg contribution (dashed) is
about three times smaller in absolute magnitude, but as we
can observe, has the same shape but opposite sign to the gg

channel. The qq̄ contribution (dotted) is two orders of mag-
nitude smaller than the gg one, and with the same sign of
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ŝ − m2
H + imHΓH

+ Acont

Interference term has 2 pieces

δσ̂gg→H→γγ = −2(ŝ − m2
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FIG. 1: The distribution of diphoton invariant masses from the real interference term in eq. (12), as a
function of Mγγ =

√
ŝ, from eq. (10), before including experimental resolution effects. The right panel is a

close-up of the left panel, showing the maximum and minimum near Mγγ = MH ± ΓH/2.

is the gluon-gluon luminosity function, and

D(ŝ) = (ŝ −M2
H)2 +M2

HΓ2
H . (16)

The numerical results below use MH = 125 GeV and ΓH = 4.2 MeV for purposes of presentation,

even though the current experimental indications are for a slightly heavier H. The running MS

fermion masses at Q = MH are taken to be mt = 168.2 GeV, mb = 2.78 GeV, mc = 0.72 GeV,

mτ = 1.744 GeV, and α = 1/127.5. The gluon distribution function g(x) and strong coupling

αS(Q) are taken from the MSTW2008 NLO set [39], with Q2 = ŝ. Because the focus here is on

the shift in the diphoton mass peak, the very small imaginary interference term in eq. (13) and

its 2-loop counterpart discussed in [28] will be neglected here, since they are small and affect the

overall size but not the shape of the invariant mass distribution. Numerical results will be shown

for the 2012 run energy
√
s = 8 TeV, but the results on the shape (as opposed to the size) of the

Mγγ distribution turn out to be nearly independent of the LHC beam energy at leading order.

This is because the
√
s dependence enters only through G(ŝ), which appears in front of both NH

and Nint,Re in eq. (10).

The factor of ŝ−M2
H in Nint,Re is odd about the Higgs peak, making its contribution to the total

cross-section negligible when ŝ is integrated over [27, 28]. However, the same factor implies a slight

excess for Mγγ =
√
ŝ below MH and a slight deficit above, therefore pushing the peak to lower Mγγ

than it would be if interference were absent. This is shown first in the case without any experimental

resolution effects for the photons, in Figure 1. The distribution shown is obtained from the real

interference term in eq. (12), plugged in to eq. (10), after integrating over −1 < z < 1 and dividing

by 2 for identical photons. The distribution shows a sharp peak and dip near Mγγ = MH − ΓH/2

and MH + ΓH/2 respectively, but there are also long tails due to the Breit-Wigner shape. [Using
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Fig. 19: Diphoton invariant mass distribution for the interference terms. The solid line is the gg channel contribu-
tion, the dotted one the qg channel, and dashed the qq̄.

For a phenomenological analysis of the results, we need to perform a convolution of the par-
tonic cross-section with the parton density functions. We use the MSTW2008 LO set [89] (five mass-
less flavours are considered), and the one-loop expression of the strong coupling constant, setting the
factorization and renormalization scales to the diphoton invariant mass µF = µR = Mγγ . For the
sake of simplicity, the production amplitudes are computed within the effective Lagrangian approach
for the ggH coupling (relying in the infinite top mass limit), approximation known to work at the
few percent level for the process of interest. The decay into two photons is treated exactly and we
set α = 1/137. For the Higgs boson we usemH = 125GeV and ΓH = 4.2MeV. For all the histograms
we present in this section, an asymmetric cut is applied to the transverse momentum of the photons:
phard(soft)

T,γ ≥ 40(30)GeV. Their pseudorapidity is constrained to |ηγ | ≤ 2.5. We also implement the
standard isolation prescription for the photons, requesting that the transverse hadronic energy deposited
within a cone of size R =

√
∆φ2 + ∆η2 < 0.4 around the photon should satisfy pT,had ≤ 3GeV.

Furthermore, we reject all the events with Rγγ < 0.4.
In Figure 19 we show the three contributions to the full signal-background interference as a func-

tion of the diphoton invariant massMγγ after having implemented all the cuts mentioned above. The gg
term (solid line) represents the dominant gg channel, while the qg contribution (dashed) is about 3 times
smaller in absolute magnitude, but as we can observe, has the same shape but opposite sign to the gg
channel. The qq̄ contribution (dotted) is a couple of orders of magnitude smaller than the gg one. The
position of the maximum and minimum of the distribution are located nearMγγ = MH ± ΓH/2, with a
shift at this level that remains at O(1MeV).

To simulate the smearing effects introduced by the detector, we convolute the cross-section with a
Gaussian function of mass resolution width σMR = 1.7GeV following the procedure Ref. [79].

In order to quantify the physical effect of the interferences in the diphoton invariant mass spec-
trum, we present in Figure 20 the corresponding results after adding the Higgs signal. The solid curve
corresponds to the signal cross-section, without the interference terms, but including the detector smear-
ing effects. As expected, the (signal) Higgs peak remains at Mγγ = 125GeV. When adding the gg
interference term, we observe a shift on the position of the peak of about 90MeV towards a lower mass

60

Asymmetry enhanced by detector 
resolution can reach 100 MeV effect 

Fig. 20: Diphoton invariant mass distribution including the smearing effects of the detector (Gaussian function
of width 1.7GeV). The solid line corresponds to the signal-only contribution. The dotted line corresponds to the
distribution after adding the gg interference term, and the dashed line represents the complete Higgs signal plus all
three interference contributions (gg, qg and qq̄).

(dotted), as found in Ref. [79]. If we also add the qg and qq̄ contributions (dashed), the peak is shifted
around 30MeV back towards a higher mass region because of the opposite sign of the amplitudes.

Given the fact that qq̄ and qg channels involve one extra particle in the final state, one might
expect their contribution to be even more relevant for the corresponding interference in the process
pp → H(→ γγ) + jet, since the usually dominant gg channel [90] starts to contribute at the next order
in the strong coupling constant for this observable.

It is worth noticing that the results presented here are plain LO in QCD. Given the fact that very
large K-factors are observed in both the signal and the background, one might expect a considerable
increase in the interference as well. While reaching NNLO accuracy for the interference looks impossible
at the present time, a prescription to estimate the uncertainty on the evaluation of the interference and a
way to combine it with more precise higher order computations for signal and background for gg → ZZ
was recently presented in [91]. The procedure can be easily extended to the case presented here by
including all possible initial state channels.

Finally, we would like to emphasize that a more realistic simulation of the detector effects should
be performed in order to obtain reliable predictions and allow for a direct comparison with the experi-
mental data.

3.5.5 Interference effects in γγ + jet
13

The Higgs diphoton signal at the LHC is in principle affected by interference between the Higgs
resonant amplitudes and the continuum background amplitudes with the same initial and final states.
Because the continuum amplitude gg → γγ is of one-loop order while the resonant amplitude gg →
H → γγ is effectively of two-loop order, the interference need not be negligible. It was shown in [87,88]
that the effect on the cross-section is very small at leading order, but the imaginary part of the two-loop

13S. Martin
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Interference at NLO

2

at small x.) Here we present the dominant NLO correc-
tions to the interference between the Higgs signal and
background in QCD.

Figure 1 shows, first, the leading-order contribution
to the interference [denoted by LO (gg)] of the reso-
nant amplitude gg → H → γγ with the one-loop con-
tinuum gg → γγ amplitude mediated by the five light
quark flavors. We also include the tree-level process
qg → γγq, whose interference with qg → Hq → γγq
[denoted by LO (qg)] is at the same order in αs as the
leading gg → H → γγ interference, although suppressed
by the smaller quark PDF. It was already considered in
refs. [6, 7]. The contribution from qq̄ → Hg → γγg is
numerically tiny [6, 7] and we will neglect it.

Finally, fig. 1 depicts the three types of continuum am-
plitudes mediated by light quark loops that we include in
the dominant NLO corrections [denoted by NLO (gg)]:
the real radiation processes, gg → γγg and qg → γγq
at one loop, and the virtual two-loop gg → γγ process.
All these amplitudes are adapted from refs. [17–19]. The
soft and collinear divergences in the real radiation pro-
cess are handled by dipole subtraction [20, 21]. Although
the contribution from qg → γγq via a light quark loop is
not the complete contribution to this amplitude, it forms
a gauge-invariant subset and it is enhanced by a sum over
quark flavors, so that it gives a significant contribution
to the interference at finite Higgs transverse momentum.

NLO (gg): +

+ +

LO (gg): H LO (qg):

FIG. 1. Representative diagrams for interference between the
Higgs resonance and the continuum in the diphoton channel.
The dashed vertical lines separate the resonant amplitudes
from the continuum ones.

In order to parametrize possible deviations from the
SM in the coupling of the Higgs boson to the massless
vector boson pairs gg and γγ, we adopt the notation of
ref. [22] for the effective Lagrangian,

Leff = −
[αs

8π
cgbgGa,µνG

µν
a +

α

8π
cγbγFµνF

µν
] h

v
, (1)

where bg,γ are defined to absorb all SM contributions, and
cg,γ differ from 1 in the case of new physics. The line-
shape for the Higgs boson can be divided into a pure sig-
nal term and an interference correction, which we write
schematically in the narrow-width approximation (NWA)

as,

dσsig

dMγγ
=

S

(M2
γγ −m2

H)2 +m2
HΓ2

H

, (2)

dσint

dMγγ
=

(M2
γγ −m2

H)R +mHΓHI

(M2
γγ −m2

H)2 +m2
HΓ2

H

. (3)

The signal factor S is proportional to c2gc
2
γ , while the real

and imaginary parts of the interference terms, R and I,
are proportional to cgcγ . We take the resonance mass to
be mH = 125 GeV and the SM value of the width to be
ΓSM
H = 4 MeV [23]. In the NWA, the integral of the cross

section over the resonance is given by πS/(2m2
HΓH) and

πI/(2mH) for signal and interference respectively. An
important feature is that the integrated interference con-
tribution has a different dependence on the Higgs width
and couplings than does the signal, i.e. cgcγ vs. c2gc

2
γ/ΓH .

Hence it could potentially be used to constrain ΓH inde-
pendently of the Higgs couplings.
The theoretical lineshapes (2) and (3) are very narrow,

and strongly broadened by the experimental resolution.
The main effect of the real termR after this broadening is
to shift the apparent mass slightly [5]. Following ref. [5],
we model the experimental resolution by a Gaussian dis-
tribution. Although a definitive study of the apparent
mass shift has to be performed by the experimental col-
laborations, using a complete description of the resolu-
tion and the background model, we estimate it as follows:
For the distribution in a given variable, for example the
invariant mass M , the likelihood of obtaining N events
with M = M1,M2, . . . ,MN is given by,

L =
LN

N !
e−Ñ

N
∏

i=1

dσ̃

dM

∣

∣

∣

∣

M=Mi

, (4)

where L is the integrated luminosity. Variables with
tildes denote the prediction of the “experimental model”,
a pure Gaussian with a variable mass parameter m̃H .
For the true distribution, obtained by convoluting the
sum of eqs. (2) and (3) with a Gaussian of the same
width, σ = 1.7 GeV, we use variables without tildes.
To fit for the shifted mass, we minimize the test statistic
t = −2 lnL with respect to m̃H . We derived the following
equation determining the mass shift ∆mH ≡ m̃H −mH :

0 = δ〈t〉 ∝
∫

dM
dσ̃
dM

− dσ
dM

dσ̃
dM

δ
dσ̃

dM
≈
∫

dM
dσ̃
dM

− dσ
dM

dσ
dM

δ
dσ̃

dM

= δ

[

∫

dM

(

dσ̃
dM

− dσ
dM

)2

2 dσ
dM

]

(5)

where δ ≡ δ/δm̃H . Because dσ
dM

in the denominator
should include the large continuum background, which is
roughly constant throughout the range of consideration,
eq. (5) reduces to a simple least-squares fit. The mass
shift obtained from this fit is stable once we include in-
variant masses ranging out to three times the Gaussian

L.Dixon, Y.Li (2013)

3

width. (In practice we performed a fit varying the height
and width of the Gaussian as well as the mass; however,
the former two quantities are hardly affected by the real
part of the interference.)

120 122 124 126 128 130
0

1

2

3

4

MΓΓ !GeV"

dΣ
sig
#d
M
Γ
Γ
!fb
#G
eV
"

Higgs Signal # NLO $gg%

Higgs Signal # LO $gg%

120 122 124 126 128 130

$0.10

$0.05

0.00

0.05

0.10

MΓΓ !GeV"

dΣ
in
t #
dM
Γ
Γ
!fb
#G
eV
"

Interference # NLO $gg%

Interference # LO $qg%

Interference # LO $gg%

FIG. 2. Diphoton invariant mass Mγγ distribution for pure
signal (top panel) and interference term (bottom panel) after
Gaussian smearing.

The top panel of fig. 2 shows the Gaussian-smeared
diphoton invariant mass distribution for the pure signal
at both LO and NLO in QCD. We use the MSTW2008
NLO PDF set and αs [24] throughout, and set α = 1/137.
Standard acceptance cuts are applied to the photon

transverse momenta, phard/softT,γ > 40/30 GeV, and rapidi-
ties, |ηγ | < 2.5. In addition, events are discarded when a
jet with pT,j > 3 GeV is within ∆Rγj < 0.4 of a photon.
A jet veto is simulated by throwing away events with
pT,j > 20 GeV and ηj < 3. The scale uncertainty bands
are obtained by varying mH/2 < µF , µR < 2mH inde-
pendently. Note that the NLO (gg) channel includes the
contribution from the qg channel where the quark splits
to a gluon; this reduces dependence on the factorization
scale µF . As a result, the scale uncertainty bands mostly
come from varying the renormalization scale µR.

The bottom panel of fig. 2 shows the corresponding
Gaussian-smeared interference contributions. The con-

tribution involving the SM tree amplitude for qg → γγq
is denoted by LO (qg). The destructive interference from
the imaginary part I in eq. (3) shows up at two-loop or-
der in the gluon channel in the zero mass limit of light
quarks [4]. It produces the offset of the NLO (gg) curve
from zero at Mγγ = 125 GeV.
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THE MASS SHIFT

In fig. 3 we plot the dependence of the apparent Higgs
boson mass shift, as a function of the jet veto pT cut.
The mass shift for inclusive production (large pT,veto) is
found to be around 70 MeV at NLO. This is significantly
smaller than the prediction of 120 MeV at LO, mainly
due to the large NLO QCD Higgs production K factor.
The K factor for the SM continuum background is also
sizable due to the same gluon incoming states. But the
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THE MASS SHIFT

In fig. 3 we plot the dependence of the apparent Higgs
boson mass shift, as a function of the jet veto pT cut.
The mass shift for inclusive production (large pT,veto) is
found to be around 70 MeV at NLO. This is significantly
smaller than the prediction of 120 MeV at LO, mainly
due to the large NLO QCD Higgs production K factor.
The K factor for the SM continuum background is also
sizable due to the same gluon incoming states. But the
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