

Higgs boson acceptance and acceptance uncertainties

Les Houches 2013

Motivation

- Both ATLAS and CMS are about to reach fair sensitivities for unraveling <u>event yields</u> in different selection categories into <u>cross sections</u> σ_i×BR(X) for individual Higgs production modes *i*, where *i* = gF, VBF, VH, ttH
- To convert <u>measured cross sections in separate fiducial volumes</u> (often so many per decay mode X that each of them is fairly meaningless, at least for now) into gF, VBF, VH, ttH cross sections, we need to know:
 - acceptance efficiencies for each experimental exclusive final state: ε
 - uncertainties on these acceptance efficiencies: δε,
 - expressed via independent nuisance parameters

Prototypical examples

- The goal of exercising the prototypical examples specified below is two-fold:
 - Define the prescription for evaluation of acceptance uncertainties, so that the experiments can repeat calculations for the actual cuts used at any given time.
 - Set benchmark numbers (following the defined prescription), so that the experiments could have a set of reference points indicating what these uncertainties might be.
 - Since the prototypical selections are not too far from the real cuts, such benchmarking is very useful for weeding out potential bugs when the experiments repeat the prescribed workflow for evaluating the acceptance uncertainties with the actual cuts used in their analyses.

Prototypical examples #1: $H \rightarrow \gamma \gamma$

Why H→γγ?

- Overall, the H→γγ channel <u>already</u> has a very good signal significance opening µ the door for cross section measurements
- − H→γγ measurements/search are now performed with tags targeting <u>all four</u> main production mechanisms

ggF	VBF	VH	ttH
$\mu = 1.6^{+0.4}_{-0.4}$	$\mu = 1.7^{+0.9}_{-0.9}$	$\mu = 1.8^{+1.5}_{-1.3}$	$\mu = -0.2^{+2.4}_{-1.9}$

<u>Prototypical</u> Η→γγ

	unta	gged	di-je	t tag	MET tag	Lepton	ttH tag		
	BB+BE BB		low m _{JJ}	high m _{JJ}		tag	bbqqqq	bbqqlv	
	8	7	6	5	4	3	2	1	
gF	ε ₀ (1±δ)								
VBF									
VH									
ttH									

Tag flow goes from right to left

* BB: barrel-barrel photonsBE+EE: barrel-endcap + endcap-endcap photons

All tags are mutually exclusive,

i.e. if an event passes the selection criteria for a particular tag N (moving from right to left), it is not allowed to be included in any other higher-N tag to the left

For simplicity, assume that

- selection of objects is 100% efficient
- mis-ID rate is 0%
- experimental measurements are 100% accurate

<u>Prototypical</u> Η→γγ

	unta	gged	di-je	t tag	MET tag	Lepton	ttH tag		
	BB+BE BB		low m _{JJ}	high m _{JJ}		tag	bbqqqq	bbqqlv	
	8	7	6	5	4	3	2	1	
gF	ε ₀ (1±δ)								
VBF									
VH									
ttH									

* BB: barrel-barrel photons BE+EE: barrel-endcap + endcap-endcap photons

What is needed:

- 8x4=32 theoretical efficiencies ε₀
- relative uncertainties on theoretical efficiencies δ, organized by independent sources

Prototypical examples #1: $H \rightarrow \gamma \gamma$

SMALL-PRINT DISCLAIMER:

- What follows a <u>PROTOTYPICAL EXAMPLE</u>
- The cuts listed below do not represent accurately the actual selection used by either ATLAS or CMS

Prototypical selection #1: ttH semi-leptonic

- Photons:
 - at least two photons with |η|<1.5, p_T(1)>m_H/3, p_T(2)>m_H/4

• Tag:

- at least **one lepton** (e/ μ) with p_T>20, $|\eta|$ <2.4
- at least **two jets** with $E_T > 25$, $|\eta| < 2.4$
- from all jets, at least one is b-tagged

• Current default efficiency ϵ_0 : <u>PYTHIA</u>

Prototypical selection #2: ttH all-hadronic

- Photons:
 - at least two photons with |n|<1.5, p_T(1)>m_H/3, p_T(2)>m_H/4

• Tag:

- no leptons (e/ μ) with p_T>20, $|\eta|$ <2.4
- at least **four jets** with $E_T > 25$, $|\eta| < 2.4$
- from all jets, at least one is b-tagged

• Current default efficiency ϵ_0 : <u>PYTHIA</u>

Prototypical selection #3: VH leptonic

- Photons:
 - at least two photons with |n|<2.5, p_T(1)>m_H/3, p_T(2)>m_H/4
- Tag:
 - at least **one lepton** (e/ μ) with p_T>20, $|\eta|$ <2.4

Current default efficiency ε₀: <u>PYTHIA</u>

Prototypical selection #4: VH MET

- Photons:
 - at least two photons with |n|<2.5, p_T(1)>m_H/3, p_T(2)>m_H/4
- Tag:
 - **no leptons** (e/ μ) with with p_T >20, $|\eta|$ <2.4
 - **MET** > 70

Current default efficiency ε₀: <u>PYTHIA</u>

Prototypical selection #5: VBF high m_{ii}

• Photons:

– at least two photons with |n|<2.5, p_T(1)>m_H/3, p_T(2)>m_H/4

• Tag:

- at least **two jets** with $p_T > 30$, $|\eta| < 4.7$
- two highest E_T jets:
 - $\Delta \eta = |\eta_{j1} \eta_{j2}| > 3$ (note: no requirement on the rapidity gap)
 - m_{ii}>500
 - Zeppenfeld variable: Z = $|\eta_{\gamma\gamma} (\eta_{j1} + \eta_{j2})/2| < 2.5$
 - Δφ(jj,γγ) > 2.6

• Current default efficiency ε₀: <u>POWHEG</u>

Prototypical selection #6: VBF low m_{ii}

• Photons:

– at least two photons with |n|<2.5, p_T(1)>m_H/3, p_T(2)>m_H/4

• Tag:

- at least **two jets** with $p_T > 20$, $|\eta| < 4.7$
- two highest E_T jets:
 - $\Delta \eta = |\eta_{j1} \eta_{j2}| > 3$ (note: no requirement on the rapidity gap)
 - m_{ii}>250
 - Zeppenfeld variable: Z = $|\eta_{\gamma\gamma} (\eta_{j1} + \eta_{j2})/2| < 2.5$
 - Δφ(jj,γγ) > 2.6

• Current default efficiency ε₀: <u>POWHEG</u>

<u>Prototypical</u> selection #7: untagged BB

- Photons:
 - at least two photons with |η|<2.5, p_T(1)>m_H/3, p_T(2)>m_H/4
 - both highest p_T photons are in the barrel: $|\eta| < 1.5$

Current default efficiency ε₀:
<u>POWHEG</u> with Higgs p_T reweighted to match HqT

Prototypical selection #8: untagged BE+EE

- Photons:
 - at least two photons with |n|<2.5, p_T(1)>m_H/3, p_T(2)>m_H/4
 - at least one of the highest p_T photons is in endcap: $|\eta| > 1.5$

Current default efficiency ε₀:
<u>POWHEG</u> with Higgs p_T reweighted to match HqT

Question No. 1

Are the current ways to evaluate **the default efficiencies** ε₀ in each event category **OK**?

ggF	Powheg, p _T (H) reweighted to match HqT
VBF	Powheg
И	Pythia
ttH	Pythia

Question No. 2 (a, b)

- (a) Can we continue to use MCFM for estimating PDF uncertainties on ε_0 ?
- (b) Can we associate PDF uncertainties on ε_0 with two independent nuisance parameters?
 - gg-dominated processes: ggF and ttH
 - qq-dominated processes: VBF and VH

Below is the correlation table by Joey Huston from 2011

(Appendix B in the joint ATLAS-CMS Note: ATLAS PHYS-PUB-2011-11, CMS NOTE-2011/005)

····H	120																		
	ggH	VBF	WH	ZH	ttH	z	W+/W -	Z	ww	wz	Wγ	WQQ	ZQQ	ggWW	ggZZ	ttbar	tW	tb	tbq
ggH	1	-0.57	-0.23	-0.14	-0.6	0.01	0.03	0.02	-0.20	0.04	0.23	-0.14	0.95	0.47	0.28	-0.35	-0.12	-0.24	0.52
VBF	-0.57	1	0.63/0.73	0.76	0.09	0.43	0.26/0.41	0.79	0.72	0.28/0.43	0.28/0.37	0.52/0.71	-0.41	-0.47	-0.4	-0.10	-0.28	0.65	-0.25
WH	-0.23	0.63/0.73	1	0.93	0	0.62	0.52/0.64	0.92	0.93	0.65/058	0.65/0.56	0.79/0.95	-0.02	-0.29	-0.28	-0.15	-0.28	0.99/0.77	0.05/-0.30
ZH	-0.14	0.76	0.93	1	0.03	0.64	0.53/0.66	0.99	0.99	0.55/0.71	0.63	0.83	-0.07	-0.31	-0.3	-0.14	-0.28	0.93	-0.14
ttH	-0.6	0.09	0	0.03	1	-0.61	-0.6	0	-0.05	-0.58	-0.64	0.04	-0.5	0.03	0.56	0.94	0.84	0.02	-0.07

т_н=120

Question No. 3 (a, b)

(a) How many independent nuisance parameters do we need to account for independent theoretical uncertainties

- for each of the four Higgs production mechanisms
- in all fiducial volume acceptances (8 in this toy example)

(b) And what are the prescriptions for estimating numerical value of each uncertainty?

What's next?

- Further discussion...
- Who can do what?