

Summary of the summaries

or

Anything relevant for Session 2 from Session 1?

Günther Dissertori ETH Zürich

Often heard during last days

SM rules!

"so what are you going to do during session 2 ?"

SM rules!

"so what are you going to do during session 2 ?"

Solution → My answer:

well, we will do a lot of hiking, hunting and gathering (mushrooms, strawberries, ideas)

I guess you/we should worry about issues such as

- impact/importance of PDF uncertainties (eg. at high x)
- impact of EWK corrections, eg. at high p_T, or in specific final states such as DY, di\tri-bosons, photon-induced processes, eg. \gam\gam\to WW
- the avalanche of new developments in the ME+PS (especially NLO+PS) MC sector
- control/description of particularly challenging final states as backgrounds, eg. ttbb, tt+light jets

- PDF uncertainties for gluon-gluon fusion
 - trace differences between CTEQ, MSTW and NNPDF to see if uncertainty can be reduced
- impact of LHC data, current and future

- PDF uncertainties for gluon-gluon fusion
 - trace differences between CTEQ, MSTW and NNPDF to see if uncertainty can be reduced
- impact of LHC data, current and future

Studies started:

examine correlations in NNPDF (to be expanded to MSTW,...); try to understand any differences in the impacts of various experiments; effects of different heavy quark schemes;

influence of LHC data

- PDF uncertainties for gluon-gluon fusion
 - trace differences between CTEQ, MSTW and NNPDF to see if uncertainty can be reduced
- impact of LHC data, current and future

Studies started:

examine correlations in NNPDF (to be expanded to MSTW,...); try to understand any differences in the impacts of various experiments;

effects of different heavy quark schemes;

influence of LHC data

Discussion yesterday:

might be several years away from a significant reduction of gluon pdf uncertainty (?) **in any case**: new NNLO calculations, ready or to still to come (tT, inc. jets, Z+jets), plus high-precision LHC data in these final states will be crucial!

- PDF uncertainties for gluon-gluon fusion
 - trace differences between CTEQ, MSTW and NNPDF to see if uncertainty can be reduced
- impact of LHC data, current and future

Studies started:

examine correlations in NNPDF (to be expanded to MSTW,...); try to understand any differences in the impacts of various experiments;

effects of different heavy quark schemes;

influence of LHC data

Discussion yesterday:

might be several years away from a significant reduction of gluon pdf uncertainty (?) **in any case**: new NNLO calculations, ready or to still to come (tT, inc. jets, Z+jets), plus high-precision LHC data in these final states will be crucial!

combination of PDF sets: META PDFs ?

J. Huston's talk

Fits of the fits: META PDFs

PDFs from different groups have different physics inputs. But if we only focus on the phenomenological studies at the LHC with the limited x and Q ranges, the idea of META PDF is reasonable and also feasible.

Procedure (for LHC):

1, selecting a specific x-Q range, and a parameterization form to describe all the PDFs at an initial scale above the bottom quark mass;

2, check that the fitted PDFs can well represent the original PDFs at the x-Q range studied;

3, choosing a scheme to combine the PDF measurements of different groups in the new PDF parameter space;

Benefits:

1, A natural way to compare and combine the LHC predictions from different PDF groups independent of the process, works similarly as the PDF4LHC prescriptions but directly in the PDF parameter space;
2, Especially desirable for including results from large number of PDF groups, in this case also minimizing numerical computation efforts for massive NNLO calculations;
2013/6/5 Les Houches 2013

Electroweak Corrections						
Electroweak radiative corrections at high energies (continued)						
Example: D	rell–Yan p	roduction				
Neutral curi	rent: pp	$\rightarrow l^+l^-$ at	$\sqrt{s} = 14 \mathrm{Te}$	eV (based or	n S.D./Huber arXiv	(:0911.2329)
$M_{\rm ll}/{ m GeV}$	$50-\infty$	$100 - \infty$	$200 - \infty$	$500-\infty$	$1000-\infty$	$2000 - \infty$
σ_0/pb 738.733(6) 32.7236(3) 1.48479(1) 0.0809420(6) 0.00679953(3) 0.000303744(1)						
$\sigma_0/{ m pb}$	738.733(6)	32.7236(3)	1.48479(1)	0.0809420(6)	0.00679953(3)	0.000303744(1)
σ_0/pb $\delta^{\mathrm{rec}}_{\mathrm{q\bar{q}},\mathrm{phot}}/\%$	738.733(6) -1.81	32.7236(3) -4.71	-2.92	-3.36	-4.24	0.000303744(1) -5.66
$\sigma_0/{ m pb} \ \delta_{ m qar q, phot}^{ m rec}/\% \ \delta_{ m qar q, weak}/\%$	738.733(6) -1.81 -0.71	32.7236(3) -4.71 -1.02	-2.92 -0.14	-3.36 -2.38	-4.24 -5.87	0.000303744(1) -5.66 -11.12
σ_0/pb $\delta^{\mathrm{rec}}_{\mathrm{q}\bar{\mathrm{q}},\mathrm{phot}}/\%$ $\delta_{\mathrm{q}\bar{\mathrm{q}},\mathrm{weak}}/\%$ $\delta^{(1)}_{\mathrm{Sudakov}}/\%$	738.733(6) -1.81 -0.71 0.27	32.7236(3) -4.71 -1.02 0.54	-2.92 -0.14 -1.43	-3.36 -2.38 -7.93	0.00679953(3) -4.24 -5.87 -15.52	0.000303744(1) -5.66 -11.12 -25.50

Electroweak Corrections							
Electroweak radiative corrections at high energies (continued) Example: Drell-Yan production							
Neutral current: $pp \rightarrow l^+l^-$ at $\sqrt{s} = 14 \text{ TeV}$ (based on S.D./Huber arXiv:0911.2329)							
	on. pp		$V_{2} = 14 16$	ev (based of	15.D./Huber arXiv	/:0911.2329)	
$M_{\rm H}/{ m GeV}$	50−∞	100-∞	$\sqrt{s} = 14$ Re $200-\infty$	500-∞	1000-∞	2000-∞	
$M_{ m ll}/ m GeV$ $\sigma_0/ m pb$	50−∞ 738.733(6)	$100-\infty$ 32.7236(3)	$\sqrt{3} = 14$ 10 $200 - \infty$ 1.48479(1)	500−∞ 0.0809420(6)	1000−∞ 0.00679953(3)	$\frac{2000 - \infty}{0.000303744(1)}$	
$M_{ m ll}/ m GeV$ $\sigma_0/ m pb$ $\delta^{ m rec}_{ m q\bar{q}, phot}/\%$	50−∞ 738.733(6) −1.81	$100-\infty$ 32.7236(3) -4.71	$\sqrt{3} = 14$ 10 $200 - \infty$ 1.48479(1) -2.92	500-∞ 0.0809420(6) -3.36	1000-∞ 0.00679953(3) -4.24	$ \begin{array}{r} 2000 - \infty \\ 0.000303744(1) \\ -5.66 \end{array} $	
$M_{ m ll}/ m GeV$ $\sigma_0/ m pb$ $\delta^{ m rec}_{ m q\bar{q}, phot}/\%$ $\delta_{ m q\bar{q}, weak}/\%$	$50-\infty$ 738.733(6) -1.81 -0.71	$100-\infty$ 32.7236(3) -4.71 -1.02	$\sqrt{s} = 14$ 10 $200 - \infty$ 1.48479(1) -2.92 -0.14	500-∞ 0.0809420(6) -3.36 -2.38	1000-∞ 0.00679953(3) -4.24 -5.87	$\begin{array}{r} 2000 - \infty \\ \hline 0.000303744(1) \\ -5.66 \\ -11.12 \end{array}$	
$M_{ m ll}/ m GeV$ $\sigma_0/ m pb$ $\delta_{ m q\bar{q}, phot}/\%$ $\delta_{ m q\bar{q}, weak}/\%$ $\delta_{ m Sudakov}/\%$	$50-\infty$ 738.733(6) -1.81 -0.71 0.27	$100 - \infty$ 32.7236(3) -4.71 -1.02 0.54	$\sqrt{3} = 14$ for $\sqrt{3} = 14$ for $\sqrt{3} = 14$ for $\sqrt{3} = 14$ for $\sqrt{3} = 1.48479(1)$ -2.92 -0.14 -1.43	500-∞ 0.0809420(6) -3.36 -2.38 -7.93	1000-∞ 0.00679953(3) -4.24 -5.87 -15.52	$\begin{array}{r} 2000 - \infty \\ \hline 0.000303744(1) \\ -5.66 \\ -11.12 \\ \hline -25.50 \end{array}$	

By the way:

do we all speak a common language when we talk about born, dressed, bare (naked, half-naked, FKK,) leptons? ---->

Lepton Definitions – as agreed on in W,Z LPCC EW WG (CMS, ATLAS, Lhcb) in May 2012

https://indico.cern.ch/conferenceOtherViews.py? view=standard&confld=178469

Uta Klein

Herwig

From slides by Atlas W,Z contacts Alberto Belloni & Uta Klein @ W,Z LPCC subgroup meeting 27.4.2012

Lepton Definitions – as agreed on in W,Z LPCC EW WG (CMS, ATLAS, Lhcb) in May 2012

	NC & CC DY : A wish list for discussion & studies some tasks are already under study also in LPCC and EW experimental and theory WG's
→	"optimal" choice and <u>documentation</u> of EW parameters and SM inputs for <i>matched</i> QCD and EW calculations to be used by theorists and experimentalists \rightarrow task for Les Houches ? or LPCC? or both?
→	improved communication between Les Houches and LPCC activities!
*	Precision evaluation of missing HO EW (ISR, interferences, weak) corrections and QED FSR modelling; application of missing HO EW corrections and remaining systematics
*	Improved modelling of $p_T(W,Z)$: implementation of resummation into NLO MC models (but e.g also control of resummation scale)
→ kir mo	missing HO EW corrections (+systematic uncertainties) for more complex nematic variables like phi*(Z), M_T(W), W polarisation -> crucial W mass easurement precision!
*	Improved modelling and uncertainties and measurement proposals for non- resonant photon-induced dilepton productions, but also for the NLO gamma-p induced dilepton and W productions
*	Improved modelling of real W and Z radiation beyond LO approach outlined by U.Baur, arXiv:hep-ph/0611241

Uta Klein

well, the (N)NLO QCD guys are marching, fast

for current exp precision and that

expected at 14 TeV

well, the (N)NLO QCD guys are marching, fast

NNLO QCD+NLO EW wishlist

Process	known	desired	details
Н	dσ @ NNLO QCD	$d\sigma$ @ NNNLO QCD + NLO EW	H branching ratios
	$d\sigma$ @ NLO EW	MC@NNLO	and couplings
	finite quark mass effects @ NLO	finite quark mass effects @ NNLO	
H + j	$d\sigma$ @ NNLO QCD (g only)	$d\sigma$ @ NNLO QCD + NLO EW	H p_T
	$d\sigma$ @ NLO EW	finite quark mass effects @ NLO	
	finite quark mass effects @ LO		
H + 2j	$\sigma_{tot}(VBF)$ @ NNLO(DIS) QCD	$d\sigma$ @ NNLO QCD + NLO EW	H couplings
	$d\sigma(gg)$ @ NLO QCD		
	$d\sigma(VBF)$ @ NLO EW		
H + V	dσ @ NNLO QCD	with $H \rightarrow b\bar{b}$ @ same accuracy	H couplings
	$d\sigma$ @ NLO EW		
tīH	$d\sigma$ (stable tops) @ NLO QCD	$d\sigma$ (top decays)	top Yukawa coupling
		@ NLO QCD + NLO EW	
HH	$d\sigma @ LO QCD (full m_t dependence)$	$d\sigma @ NLO QCD (full m_t dependence)$	Higgs self coupling
	$d\sigma @ NLO QCD (infinite m_t limit)$	$d\sigma @ NNLO QCD (infinite m_t limit)$	

Table 1: Wishlist part 1 - Higgs (V = W, Z) add a column here

N. Glover, S. Dittmaier

NNLO QCD + NLO EWK wishlist

Process	known	desired	details
tī	σ_{tot} @ NNLO QCD	$d\sigma$ (top decays)	precision top/QCD,
	$d\sigma$ (top decays) @ NLO QCD	@ NNLO QCD + NLO EW	gluon PDF, effect of extra
	$d\sigma$ (stable tops) @ NLO EW		radiation at high rapidity,
			top asymmetries
tī + j	$d\sigma$ (NWA top decays) @ NLO QCD	$d\sigma$ (NWA top decays)	precision top/QCD
		@ NNLO QCD + NLO EW	top asymmetries
single-top	$d\sigma$ (NWA top decays) @ NLO QCD	$d\sigma$ (NWA top decays)	precision top/QCD, V_{tb}
		@ NNLO QCD (t channel)	
dijet	dσ @ NNLO QCD (g only)	dσ	Obs.: incl. jets, dijet mass
	$d\sigma$ @ NLO weak	@ NNLO QCD + NLO EW	\rightarrow PDF fits (gluon at high x)
			$\rightarrow \alpha_s$
			CMS http://arxiv.org/abs/1212.6660
3j	dσ @ NLO QCD	dσ	Obs.: R3/2 or similar
		@ NNLO QCD + NLO EW	$\rightarrow \alpha_s$ at high scales
			dom. uncertainty: scales
			CMS http://arxiv.org/abs/1304.7498
$\gamma + j$	dσ @ NLO QCD	dσ @ NNLO QCD	gluon PDF
	dσ @ NLO EW	+NLO EW	$\gamma + b$ for bottom PDF
	1		

Table 2: Wishlist part 2 – jets and heay quarks

N. Glover, S. Dittmaier

details

H branching ratios

well, the (N)NLO QCD guys are marching, fast

known

Process

NNLO QCD+NLO EW wishlist

Process	known	desired
Н	dσ @ NNLO QCD	d σ @ NNNLO QCD +
	$d\sigma$ @ NLO EW	MC@NNLO
	finite quark mass effects @ NLO	finite quark m
H + j	$d\sigma$ @ NNLO QCD (g only)	$d\sigma @ NNLO 0$
	$d\sigma$ @ NLO EW	finite quark m
	finite quark mass effects @ LO	
H + 2j	$\sigma_{tot}(VBF)$ @ NNLO(DIS) QCD	$d\sigma$ @ NNLO (
	$d\sigma(gg)$ @ NLO QCD	
	$d\sigma(VBF)$ @ NLO EW	
H + V	dσ @ NNLO QCD	with $H \rightarrow b\bar{b}$
	$d\sigma$ @ NLO EW	
tīH	$d\sigma$ (stable tops) @ NLO QCD	$d\sigma$ (top decays
		@ NLO QCD
HH	$d\sigma @ LO QCD (full m_t dependence)$	$d\sigma$ @ NLO Q0
	$d\sigma @ NLO QCD (infinite m_t limit)$	dσ @ NNLO (

NNLO QCD + NLO EWK wishlist

details

NNLO QCD + NLO EWK wishlist

$d\sigma @ NLO Q($	
$d\sigma @ NNLO ($	N. Glov

Table 1: Wishlist part 1 – Hig

N. Glover, S. Dittmaier

N.	Glover,
S.	Dittmaie

NLO EW

V	$d\sigma$ (lept. V decay) @ NNLO QCD	$d\sigma$ (lept. V decay)	precision EW, PDFs
	$d\sigma$ (lept. V decay) @ NLO EW	@ NNNLO QCD + NLO EW	
		MC@NNLO	
V + j	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)	Z + j for gluon PDF
	$d\sigma$ (lept. V decay) @ NLO EW	@ NNLO QCD + NLO EW	W + c for strange PDF
V + jj	dσ(lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)	study of systematics of
		@ NNLO QCD + NLO EW	H + jj final state
VV′	dσ(V decays) @ NLO QCD	$d\sigma(V \text{ decays})$	off-shell leptonic decays
	dσ(stable V) @ NLO EW	@ NNLO QCD + NLO EW	TGCs
$gg \rightarrow VV$	dσ(V decays) @ LO QCD	$d\sigma(V \text{ decays})$	bkg. to $H \to VV$
		@ NLO QCD	TGCs
Vγ	dσ(V decay) @ NLO QCD	$d\sigma(V \text{ decay})$	TGCs
	dσ(PA, V decay) @ NLO EW	@ NNLO QCD + NLO EW	
Vbb	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay) @ NNLO QCD	bkg. for VH $\rightarrow b\bar{b}$
	massive b	massless b	
$VV'\gamma$	dσ(V decays) @ NLO QCD	$d\sigma(V \text{ decays})$	QGCs
		@ NLO QCD + NLO EW	
VV'V"	dσ(V decays) @ NLO QCD	$d\sigma(V \text{ decays})$	QGCs, EWSB
		@ NLO QCD + NLO EW	
VV' + j	dσ(V decays) @ NLO QCD	$d\sigma(V \text{ decays})$	bkg. to H, BSM searches
		NLO QCD + NLO EW	
VV' + jj	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	QGCs, EWSB
		@ NLO QCD + NLO EW	
$\gamma\gamma$	dσ @ NNLO QCD		bkg to $H \rightarrow \gamma \gamma$

desired

Table 3: Wishlist part 3 – EW gauge bosons (V = W, Z)

10

well, the (N)NLO QCD guys are marching, fast

NNLO QCD+NLO EW wishlist

							WK wich	liet
Process	known	desired		details				IIJL
Н	$d\sigma$ @ NNLO QCD	$d\sigma$ @ NNNLO @	QCD + NLO EW	H branching ratios				
	$d\sigma$ @ NLO EW	MC@NNLO						
	finite quark mass effects @ NLO	finite quark m						
H + j	$d\sigma @ NNLO QCD (g only)$	$d\sigma$ @ NNLO (hlict	
	$d\sigma$ @ NLO EW	finite quark m					111151	
	finite quark mass effects @ LO						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
H + 2j	$\sigma_{\rm tot}({\rm VBF})$ @ NNLO(DIS) QCD	$d\sigma$ @ NNLO (
	$d\sigma(gg)$ @ NLO QCD							
	$d\sigma(VBF)$ @ NLO EW			Process	known	desired	details	
H + V	$d\sigma @ NNLO QCD$	with $H \to b\bar{b}$		V	$d\sigma$ (lept. V decay) @ NNLO QCD	$d\sigma$ (lept. V decay)	precision EW, PDFs	
	$d\sigma$ @ NLO EW				$d\sigma$ (lept. V decay) @ NLO EW	@ NNNLO QCD + NLO EW		
$t\bar{t}H$	$d\sigma$ (stable tops) @ NLO QCD	$d\sigma$ (top decays				MC@NNLO		
		@ NLO QCD		V + j	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)	Z + j for gluon PDF	
HH	$d\sigma @ LO QCD (full m_t dependence)$	$d\sigma @ NLO QO$			$d\sigma$ (lept. V decay) @ NLO EW	@ NNLO QCD + NLO EW	W + c for strange PDF	REE
	$d\sigma @ NLO QCD (infinite m_t \text{ limit})$	$d\sigma @ NNLO 0$	N. Glover,	V + jj	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)	study of systematics of	
			S. Dittmaie	r i		@ NNLO QCD + NLO EW	H + jj final state	
	Table 1: Wish	Table 1: Wishlist part 1 – Hig VV'		$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	off-shell leptonic decays		
					$d\sigma$ (stable V) @ NLO EW	@ NNLO QCD + NLO EW	TGCs	.749
				$gg \rightarrow VV$	dσ(V decays) @ LO QCD	$d\sigma(V \text{ decays})$	bkg. to $H \rightarrow VV$	
Glove	r, S. Dittmaier					@ NLO QCD	TGCs	
				Vγ	$d\sigma(V \text{ decay}) @ \text{NLO QCD}$	$d\sigma(V \text{ decay})$	TGCs	
					dσ(PA, V decay) @ NLO EW	@ NNLO QCD + NLO EW		
				Vbb	da(lant_V-dacay) @ NLO OCD	dσ(lept, V decay) @ NNLO OCD	bkg, for $VH \rightarrow b\bar{b}$	
000			a management of the			ess b		
see	<i>, , , , , , , , , , , , , , , , , , , </i>					(locays)	OGCs	11 📖
						10 OCD + NLO EW	4000	
423	ou (see eg. D.	ae +10	rian's su	immary):		(docare)	OCC. EWSB	
	in a line and fine the second					ACCD + NLO EW	QUUS, EWOD	
\cdot CO	mina. tiret appr	oyimat	inns tor i		nrodi	A COD + NLO FW		

Full N³LO in a couple of years?

 seen: possibly big impact of HQ masses, esp. b-mass, on lowpt Higgs spectrum, under study....

- NNLO double Higgs prod. under way

gauge bosons (V = W, Z)

bkg. to H, BSM searches

QGCs, EWSB

bkg to $H \rightarrow \gamma \gamma$

ecays)

cays)

QCD + NLO EW

QCD + NLO EW

LH 2013

See summary talks by M. Kado and D. de Florian

Entering the Precision Era for Higgs

• Precision in signal modeling

- Precise assessment of TH uncertainties for couplings
- Total cross sections: acceptance uncertainties
- Fiducial cross sections: Definition of fiducial regions
- Important (fiducial) differential cross sections (pT, eta, etc...)
- Definition of ratio measurements to cancel systematics

• Precision in background modeling

- H₁₂₅ direct couplings to main fermions (tau and b)
- H₁₂₅ direct top Yukawa couplings

See summary talks by M. Kado and D. de Florian

Entering the Precision Era for Higgs

- Precision in signal mode •
 - Precise assessment of TI
 - Total cross sections: acc
 - Fiducial cross sections:
 - Important (fiducial) diff
 - Definition of ratio meas

Precision in backgroun

- H₁₂₅ direct couplings to
- H₁₂₅ direct top Yukawa (

TH Uncertainties (Mostly Signal)

- Treatment of TH systematic unq
 - Not discussed! Paradigm for measurements ha Probably next session
- ic uncertainties usually treated statistically).

(see Daniel's talk)

What is the best modeling of T

Jet bin uncertainties, VBF phase space in particular:

- Improvements TH uncertainty treatment?
- Should we use a "standardized" set of VBF criteria?
- More direct and explicit use of jet veto?
- Can the ggF uncertainty be constrained from 2-jet slightly larger phase space?

PS and underlying event:

- Common definition of tunes to use for UE
- PS systematic uncertainties common strategy
- Discussed mostly for background simulation

Interference:

- yy full NLO interference estin
- Dinner discussions only width) really work (arXiv:1305.3854)? Can interferometry (mass shi

12

Monte Carlos, Tools

- See summary talk by K. Hamilton and G. Soyez
- Some relevant points:
 - an attempt to **update BLHA** (see Gudrun Heinrich)
 - many discussions on H+jet(s) modeling (relevance for VBF)
 - NLO+PS MCs: would be nice if new codes were able to spit out also the uncertainties (on their predictions), ..., some thinking started...
 - Program established for extensive comparisons (of many codes, with data), using jet data, V+jet data, gamgam data
 - Boosted jet substructure in searches with high PU
 - some studies started. Possible to reduce/eliminate bias and improve JER at the same time?

See march, march, march, …

