Benchmark Point B1 NMSSM from arXiiv: 1408.1120

B.1 (Point ID Poi2a)	Scenario		
M_h, M_{H_s}, M_H	$124.6~\mathrm{GeV}$	181.7 GeV	$322.6~\mathrm{GeV}$
M_{A_s}, M_A	$72.5~\mathrm{GeV}$	$311.7~\mathrm{GeV}$	
$ S_{H_2h_s} ^2, P_{A_1a_s} ^2$	0.90	1	
$\mu_{ au au},\mu_{bb}$	1.54	1.01	
$\mu_{ZZ}, \mu_{WW}, \mu_{\gamma\gamma}$	0.93	0.93	1.01
$\tan \beta, \lambda, \kappa$	1.9	0.628	0.354
$A_{\lambda}, A_{\kappa}, \mu_{\text{eff}}$	$251.2~\mathrm{GeV}$	$53.8~{ m GeV}$	$158.9~\mathrm{GeV}$
M_1, M_2, M_3	890 GeV	576 GeV	$1219~\mathrm{GeV}$
$A_t, A_b, A_{ au}$	$1555~\mathrm{GeV}$	-1005 GeV	-840 GeV
$M_{Q_3} = M_{t_R}, M_{b_R}$	$1075~\mathrm{GeV}$	1 TeV	
$M_{L_3} = M_{\tau_R}, M_{\mathrm{SUSY}}$	530 GeV	$2.5~{ m TeV}$	

Channels which contain at least two photons and which have X_section*BR>50fb
The two (low energy) photons come from the A_s, which is only produced in the decays of H_3 and A_2.
There are always several A_s decaying into 2photons, which offers interesting searches.
Here the most interesting decays:

	13 TeV		8 TeV
X(ggHs)BR(Hs! As As! + b_ b)	67,33	fb	28,33
X(ggHs)BR(Hs! As As! + gg gg)	193,22	fb	81,29
X(ggH)BR(H!hHs!h+ As As!bb+4gamma)	712,47	fb	247,41
X(ggH)BR(H!hHs!h+ As As!gamgam +4b)	248,02	fb	86,13
X(ggH)BR(H!hHs!h+ As As!tautau+4gam)	74,6	fb	25,91
X(ggA)BR(A! Hs As! As As + As! 6gam)	301,58	fb	103,45
X(ggA)BR(A! Hs As! As As + As! bb + 4 gam)	157,64	fb	54,08

The values in col "13TeV" are the values from the paper, the last col for 8 TeV are the 13 TeV values scaled with the ratio of the cross sections determined with SusHi.

The experimental limit for the 2photon fiducial X-section for 75 GeV is around 30 fb (Atlas PRL 113(2014)). The main cuts are |eta|<2.37, E_T_gamma >22 GeV and isolation. One has to look at the distributions to see if the point is in tension with this limit.

ATLAS PRL113 (2014)