2HDM: pp->bbA, A-> $\mu\mu$, m_A=20-60 GeV Les Houches 2015

A. Nikitenko, IC, 13th June

Physics motivation

bbA, A->ττ/μμ cross-section in 2HDM Type II can be very large

for light m_A

J. Gunion et al; arXiv:1412.3385

- $\sigma(bbA)BR(A->\tau\tau)=100 \text{ pb at m}_{\Delta}=30 \text{ GeV}$
 - for μμ mode it is scaled by factor $m_{\mu}^2/m_{\tau}^2 = 3.5x10^{-3}$

optimized selections:

- Single muon trigger HLTMu24
 - muons in offline:
 - two leading p_τ, OS, isolated muons
 - $p_T^{\mu 1} > 25$ GeV, $|\eta^{\mu 1}| < 2.1$, $p_T^{\mu 2} > 5$ GeV, $|\eta^{\mu 2}| < 2.4$
- Jets
 - at least one b-jet with $p_T>20$ GeV, $|\eta|<2.4$
 - $-\Delta R(\mu\text{-jet}) > 0.5$
- E_Tmiss
 - E_T^{miss} < 40 GeV (against tt[~])

DY inclusive

- public plot, $p_T^{\mu's} > 20 \text{ GeV}$

- DY + >= 1 jet
 - signal selections, no b-tag
 - semi-public plot

Signal and bkgs. after b-tagging

 composition of DY+jets background after b-tag Expected signal assuming σ(bbA)xBR(A->ττ)=100 pb

Exp. Limits $(\tau\tau)$ in pb

Two items still to be addressed

(in Les Houches)

- "contamination" of gg->A in b-tag event category
- contribution of bb(q)->bb(q)A

for example:

Contribution from gg->A in to b-tag category in 2HDM scenarios considered in J. Gunion's paper arXiv:1412.3385

- $\sigma(gg->A)$ at low m_A can be much bigger than $\sigma(bbA)$
 - gg->A contamination in b-tag category can be significant from to two sources:
 - gg->A+gluon
 - gluon->bb
 - gluon is misstaged as b-jet

Present generation:

gg->h at NLO (POWHEG, MG5_aMC@NLO) produce g->bb from shower MC: PY8

p_T^H in gg->A at low and high tan β

- 1. Spira et al. hep-ph/0604156
- 2. J. Alwall, Q Li, F. Maltoni arXiv:1110.1728
- 3. E.Bagnaschi, G. Degrassi, P. Slavich, A.Vicini. arXiv:1111.2854

p_T^H in gg->A vs Q_b resummation scale

p_T^H in gg->A: aMC@NLO* vs POWHEG

p_T^H in bb->A vs Q_{sh} shower scale

Selection efficiencies (at parton level) for bbA and gg->A processes for m_A=30 GeV with $p_T^{\mu 1,\mu 2} > 25$, 5 GeV

* Stat accuracy

MC generator	bbh, NLO MG5_aMC@NLO+PY with Q _{sh} variation 0.5, 2.0 of the	gg->h, NLO (in MSSM generation Q _b is varied as 0.5, 2.0 of nominal scale Q _b =15 GeV: small numbers)		
Parton level selections	nominal α =0.25 (small numbers)	Normal sign Yukawa use SM gg->h POWHEG+PY8	Wrong sign Yukawa use b-quark only in loop	
			POWHEG MSSM tanβ=40	aMC@NLO SM gg->A Q _b =15 GeV
$p_T^{\mu 1,2} > 25, 5 \text{ GeV}$ $ \eta^{\mu 1,2} < 2.1, 2.4$	0.113 0.105/0.124	0.151	0.029 0.021/0.038	0.038
>=1 jet, p _T >30 GeV, η <2.4	0.375 0.345/0.451	0.417	0.160 0.172/0.156	0.108
>=1 b-jet, $p_T^b > 30$ GeV, $ \eta^b < 2.4$	0.789 0.812/0.738	0.035	0.032(10%*) 0.030/0.027	0.021
total eff, ϵ	3.32x10 ⁻²	2.18x10 ⁻³	1.5x10 ⁻⁴	0.9x10 ⁻⁴
Ratio ε(gg->A)/ε(bbA)		0.07	0.0045	0.0027

Conclusion from previous slides (I)

- In wrong sign Yukawa cases (high tanβ) gg->A contamination to b-tag category is negligible (~3-5%)
- In normal sign Yukawa cases (low tanβ) gg->A contamination in b-tag category is dominant - ~10 times bigger than bb->A!
 - how certain are predictions for gg->A+gluon, gluon->bb?
 - *T. Sjostarnd:* "g->bb from shower gives qualitative rather than quantitative description"
 - want to compare with full ME gg->h+bb

THE END