HH production is there something left to do?

0. you have one, why not look for two?

- 1. "kappa-style" Higgs trilinear coupling measurements
- 2. break degeneracies in the dim 6 extended SM
- 3. measure/constrain BSM scenarios with a SM-like Higgs

- LHC-relevant analyses approx. 3 years ago from theory side
 - lots of progress: boosted techniques, MT2, realistic taus...
- some resonant models constrained with 8 TeV
- issues in "easy" channels for SM-like production

process	ATLAS	CMS
SM HH→bbγγ	8.4± 0.1	9.9
Total background	47.1 ± 3.5	22.6
	The signal is not the issue have	~

The signal is not the issue here

- where are the performance studies for other channels?
 - boosted regime (bbtautau, bbWW)
 - what limits sensitivity? margin for improvement?

viable channels:

Decay	Issues	Expectation 3000 ifb	References
$b\overline{b}\gamma\gamma$	 Signal small BKG large & difficult to asses Simple reconst. 	$S/B \simeq 1/3$ $S/\sqrt{B} \simeq 2.5$	[Baur, Plehn, Rainwater] [Yao 1308.6302] [Baglio et al. JHEP 1304]
$b\bar{b}\tau^+\tau^-$	 tau rec tough largest bkg tt Boost+MT2 might help 	differ a lot $S/B \simeq 1/5$ $S/\sqrt{B} \simeq 5$	[Dolan, Englert, MS] [Barr, Dolan, Englert, MS] [Baglio et al. JHEP 1304]
$b\overline{b}W^+W^-$	 looks like tt Need semilep. W to rec. two H Boost + BDT proposed 	differ a lot best case: $S/B \simeq 1.5$ $S/\sqrt{B} \simeq 8.2$	[Dolan, Englert, MS] [Baglio et al. JHEP 1304] [Papaefstathiou, Yang, Zurita 1209.1489]
$b\overline{b}b\overline{b}$	 Trigger issue (high pT kill signal) 4b background large difficult with MC Subjets might help 	$S/B \simeq 0.02$ $S/\sqrt{B} \le 2.0$	[Dolan, Englert, MS] [Ferreira de Lima, Papaefstathiou, MS] [Wardrope et al, 1410.2794]
others	 Many taus/W not clear if 2 Higgs Zs, photons no rate 		

[M. Spannowsky, Mainz workshop]

Leaving behind byzantine models

- LHC HXSWG seeks input.
- 1.) Higgs singlet
 - Fix mixing angle to largest allowed by precision EW
 - Free parameters: M_H , $\Gamma(H \rightarrow hh)$, $BR(h \rightarrow \text{invisible})$
- 2.) Non-resonant 2HDM
 - Small tan β , M_H < 2m_h
 - Free parameters: $M_H, \cos \alpha, M_A, M_{H^+}, tan\beta, m_{12}^2$
- 3.) Enhanced b, τ 2HDM
 - Large tan β
- 4.) EFT following Higgs Cross section working group
 - Neglect b's, assume no CP or flavor /violation
 - Free parameters: $c_{gg}, \ \delta y_t, \ y_t^{(2)}, \ \delta \lambda_3$

HH x-group [Dawson, Englert, Gouzevitch, Salerno, Slawinska]

Benchmarks

• B1: Higgs singlet model with Z₂ symmetry

- 5 parameters: $m_h, M_H, \cos \alpha, v, \Gamma(H \to hh), BR(h \to \text{invisible})$

- α parameterizes mixing of SM Higgs with singlet; BR(H \rightarrow hh) depends on parameters in potential
- Pros: Simple to implement, captures resonance features, limits on $\cos \alpha$ from single Higgs decays and precision EW
- Cons: Only SM and invisible Higgs decays, can get larger enhancements in 2HDM, MSSM, NMSSM

Benchmark #1 (Singlet)

- Precision EW: $\sin^2 \alpha < .12$
- **Proposal:** Fix $\cos \alpha = .95$
- New parameters in singlet model:

 $M_H, \Gamma(H \to hh), BR(h \to \text{invisible})$

Benchmark #2 (non-resonant)

- 2HDM $m_h, M_H, \cos \alpha, M_A, M_{H^+}, tan\beta, m_{12}^2$
- Pros: Multiple channels probed hh, hH, HH, hA, H⁺H⁻
- Benchmarks B4 of arXiv:1407.0281
 - Rate not dominated by resonant decay
 H→hh (M_H=200 GeV)
 - tan β =1.2, enhanced hhh, Hhh couplings, Type-I fermion-Higgs couplings
 - $-\sigma$ ~ .7 σ_{sm}
 - Interference effects change shapes

Similar to Stahl, Scenario A, Type-I Benchmark [Hespel, Lopez-Val, Vryonidou, arXiv:1407.0218]

Benchmark #3 (Enhanced bbh)

- Similar to MSSM (NMSSM) large tan β benchmarks
- tan β =20, M_H=500, large enhancement of bbh couplings

[B6 2HDM benchmark from 1407.0281]

Benchmark #4 (EFT)

- All resonances heavy, use EFT
- HXSNWG2 recommendation: linear representation (Higgs couplings from doublet)

$$L = L_{SM} + \left(\frac{h}{v} + \frac{h^2}{2v^2}\right) c_{gg} \frac{g_s^2}{4} G^A_{\mu\nu} G^{A,\mu\nu} - \frac{h}{v} \Sigma_f \Sigma_i m_{f_i} [\delta y_f]_i \overline{f}_i f_i$$
$$- \frac{h^2}{2v^2} \Sigma_f \Sigma_i m_{f_i} [y_f^{(2)}]_i \overline{f}_i f_i + \delta \lambda_3 h^3$$

- Assume no flavor violation in Higgs sector and CP conservation, neglect anomalous b couplings
- Free couplings: $c_{qq}, \delta y_t, y_t^{(2)}, \delta \lambda_s$
- Can be related to your favorite basis.....