High-precision wishlist

Propagation of NNLO results

Summary

Theory summary SM: Loops and Multilegs Working Group

Ansgar Denner University of Würzburg

for the convenors Simon Badger, Ansgar Denner, Joey Huston

Physics at TeV Colliders, Les Houches 10.6.2015

Propagation of NNLO results

Overview

Loops and Multilegs theory projects at Les Houches 2015

- comparison of NLO EW automated calculations
- high-precision wishlist
- propagation of NNLO results

More experimentally oriented projects

see experimental summary by Joey Huston

Many additional benefits of Les Houches 2015

 numerous fruitful bilateral discussions between theorists and experimentalists between theorists and theorists
 triggers for future work

Propagation of NNLO results

Outline

- 2 High-precision wishlist
- Propagation of NNLO results

High-precision wishlist

Propagation of NNLO results

Summary

Automation of NLO corrections

- NLO QCD corrections: full automation established various codes: GOSAM, HELAC-NLO, MADGRAPH5_AMC@NLO, OPENLOOPS, ...
- NLO EW corrections: automated tools being developed full automation available soon

automated tools for electroweak corrections

tool	collaboration	publ. applications
Gosam	Cullen et al.	
HELAC-NLO?	Bevilacqua et al.	
MadGraph5_aMC@NLO	Frixione et al.	$pp \rightarrow t \overline{t} + \{H, Z, W\}$
OpenLoops	Cascioli et al.	$pp \to W+ \leq \textbf{3}j$
Recola	Actis et al.	$pp ightarrow jjl^+l^-$

Technical comparisons of EW corrections

- only few calculations with automated tools available
- codes do not yet work out of the box
- ⇒ perform comparisons with three existing calculations from different groups

plan for comparisons (coordination A. Denner)				
process	publication	collaboration		
$pp ightarrow l^+ l^- jj$	arXiv:1411.0916	Recola		
$pp ightarrow l u_l jj$	arXiv:1412.5157	OpenLoops		
$pp \to t \overline{t} H$	arXiv:1504.03446	MadGraph5_aMC@NLO		
parameters and setup as in publications (see also wiki)				

at least one group volunteered to compare to each calculation

arXiv:1412.5157: contains $pp \to Wjj$ for on-shell W bosons OPENLOOPS will provide off-shell calculation

Propagation of NNLO results

Sudakov approximation

Enhancement of EW corrections by Sudakov logarithms

- EW corrections involve Sudakov logarithms $\propto (\alpha / \sin \theta_w^2) \ln^2 (E^2 / M_W^2)$
- ⇒ EW corrections of O(10% 40%) in TeV range (tails of distributions/highly boosted events)
 ⇒ EW NNLO effects relevant
- corrections from leading double logarithms negative
- extensive literature on EW Sudakov corrections at NLO, NNLO, resummation via evolution equations
 M. Ciafaloni, P. Ciafaloni, Comelli; Beccaria, Renard, Verzegnassi; Beenakker, Werthenbach; Denner, Pozzorini; Melles; Fadin, Lipatov, Martin; Hori, Kawamura, Kodaira; Jantzen, Kühn, Penin, Smirnov; Chiu, Fuhrer, Golf, Kellev, Manohar, ...
- most papers focus on virtual corrections
- real W/Z emission via (tree-level) multipurpose MC codes

Sudakov approximation for EW NLO corrections

approximation of NLO EW corrections by Sudakov logarithms

- much simpler than full NLO EW
- complete set of formulas for virtual NLO Sudakov logarithms for arbitrary processes (not mass-suppressed) available Denner, Pozzorini '01
- valid only in Sudakov regime: *all* invariants must be large s, |t|, ... ≫ M²_W
- constant corrections of O(α) not included
 ⇒ accuracy at best few per cent
- effects of photon radiation must be added independently
- other sources of enhancement can give large effects
- ⇒ assess quality of approximation by comparison to full calculations

Comparison of full NLO with Sudakov approximation

Available tools for Sudakov approximation

- SHERPA (contact: Jennifer Thomson)
- Mauro Chiesa, Fulvio Piccinini et al. for W/Z + jets (implemented in ALPGEN)

plan: compare Sudakov approximation to exact EW NLO corrections for distributions

planned comparisons

process	publication	collaboration
$pp \rightarrow l^+ l^- jj$	arXiv:1411.0916	Recola
$\mathrm{pp} ightarrow \mathrm{l} u_\mathrm{l} \mathrm{jj}$	arXiv:1412.5157	OPENLOOPS

parameters and setup as in publications (see also wiki)

distributions in publications and possibly additional ones

Study of cross-section ratio for Z/γ^* +jets and γ +jets

project in collaboration with Tools and Monte-Carlos WG proposal and coordination: Vitaliano Ciulli (CMS)

- in Sudakov approximation
- with exact NLO EW corrections
- including QCD/QED shower corrections
- Rivet analysis being prepared (V. Ciulli)

Contributers

- SHERPA (contact: Jennifer Thomson)
- Mauro Chiesa, Fulvio Piccinini et al.
- OPENLOOPS (contact: Jonas Lindert)

High-precision wishlist

Propagation of NNLO results

Summary

Outline

1 NLO EW technical comparisons

- 2 High-precision wishlist
- Propagation of NNLO results

4 Summary

Evolution of wishlist

History of wishlist

- Les Houches 2005: construction of NLO QCD wishlist
- amended at Les Houches 2007 and 2009
- Les Houches 2011: progress in NLO automation
 ⇒ no need for NLO wishlist
 instead: NNLO wishlist with few processes of high priority
- Les Houches 2013: ambitious high-precision wishlist including NNLO (N³LO) QCD, NLO EW, resummation

Les Houches 2015

- NLO EW automation upcoming
- large progress in NNLO QCD calculation (example: N-jettiness subtraction ⇒ talk by Petriello)

High-precision wishlist

Propagation of NNLO results

LH13 wishlist : Higgs and related

Process	State of the Art	Desired
Н	$d\sigma @ NNLO QCD$ (expansion in $1/m_t$)	$d\sigma @ NNNLO QCD (infinite-m_t limit)$
	full m_t/m_b dependence @ NLO QCD	full m_t/m_b dependence @ NNLO QCD
	and @ NLO EW	and @ NNLO QCD+EW
	NNLO+PS, in the $m_t \rightarrow \infty$ limit	NNLO+PS with finite top quark mass effects
H + j	dσ @ NNLO QCD (g only)	$d\sigma @ NNLO QCD (infinite-m_t limit)$
	and finite-quark-mass effects	and finite-quark-mass effects
	@ LO QCD and LO EW	@ NLO QCD and NLO EW
H + 2j	σ _{tot} (VBF) @ NNLO(DIS) QCD	$d\sigma(VBF)$ @ NNLO QCD + NLO EW
-	dσ(VBF) @ NLO EW	
	$d\sigma(gg)$ @ NLO QCD (infinite- m_t limit)	$d\sigma(gg)$ @ NNLO QCD (infinite- m_t limit)
	and finite-quark-mass effects @ LO QCD	and finite-quark-mass effects
		@ NLO QCD and NLO EW
H + V	dσ @ NNLO QCD	with $H \rightarrow bb$ @ same accuracy
	dσ @ NLO EW	dσ(gg) @ NLO QCD
	$\sigma_{tot}(gg)$ @ NLO QCD (infinite- m_t limit)	with full m_t/m_b dependence
tH and	dσ(stable top) @ LO QCD	$d\sigma(top decays)$
τH		@ NLO QCD and NLO EW
ttH	dσ(stable tops) @ NLO QCD	$d\sigma(top decays)$
		@ NLO QCD and NLO EW
$gg \rightarrow HH$	$d\sigma @ NLO QCD$ (leading m_t dependence)	dσ @ NLO QCD
	$d\sigma$ @ NNLO QCD (infinite- m_t limit)	with full m_t/m_b dependence

High-precision wishlist

Propagation of NNLO results

finite top mass corrections at NNLO still challenging

High-precision wishlist

Propagation of NNLO results

Summary

Les Houches 2015 wishlist

 \Rightarrow revision of wishlist required

Wishlist is useful!

- provides snapshot of state-of-the-art
- prioritizes required theoretical calculations
- supports funding applications

Aims

- update the 2013 wishlist to include current state-of-the-art
- attempt to quantify the necessary precision for LHC13 processes considering specific observables
- identify key measurements and priorities

Results of discussion of wishlist

Request

- wiki contains first results from discussions at Les Houches
- theorists and in particular experimentalists are encouraged to update the wiki page
- would be very nice to have precision requirements for physical observables from experimentalists

General aspects

- specify the details of top decays: NWA, pole approximation
- should more processes be requested at NNLO + PS?

High-precision wishlist ○○○○○●○ Propagation of NNLO results

Summary

Input/questions for wishlist I

H + jets

- Higgs $p_{\rm T}$: resummation of NNLO needed (N³LL)
- jet veto: NNLO + resummation needed
- how important is full m_t/m_b dependence at NNLO? in particular for boosted Higgs analyses, high p_T
- full *m*_b dependence more important for top/bottom interference at NNLO?
- QED × QCD at NNLO, accuracy of factorized ansatz? state of the art for high *p*_Γ, boosted analyses? estimates of missing corrections?
- accuracy of boosted Higgs analyses for tterf?

High-precision wishlist

Propagation of NNLO results

Input/questions for wishlist II

heavy quarks

 NNLO threshold resummation needed for top-mass measurements?

electroweak gauge bosons

- expected experimental accuracy for W mass measurements?
- resummation of p_{T,W} at N³LL needed for W-mass measurements?
- N³LL resummation needed for p_T and jet vetos in WW production

High-precision wishlist

Propagation of NNLO results

Summary

Outline

1 NLO EW technical comparisons

- 2 High-precision wishlist
- Propagation of NNLO results

4 Summary

Propagation of NNLO results

Propagation of NNLO results

Situation

- Complicated NNLO computations become available
- high CPU cost for generating events

Question

• How can the results of precision calculations efficiently be made available for flexible experimental analysis?

Options

- N tuples
- histograms
- HepMC format (as input for Rivet)

Quantifying cost of NNLO computations

planned investigation managed by Simon Badger

Attempt to compare CPU time / number of weighted events for sensible distributions for various components in

- $\bullet\ H+j$ with sector decomposition improved FKS subtraction
- H + j/W + j with *N*-jettiness subtraction
- H + j at NLO for low p_T (0.5 GeV) with SHERPA (as a contribution to inclusive Higgs)
- WW/ZZ/Z γ /W γ / $\gamma\gamma$ with q_{T} subtraction
- di-jets/ $e^+e^- \rightarrow 3j$ with antenna subtraction Glover/Gehrmann et al.
- tt with STRIPPER Czakon/Mitov et al.

try to estimate size of a basic root N-tuple format in these cases

High-precision wishlist

Propagation of NNLO results

Root Ntuples at NNLO

within the qT/NJettiness subtraction methods one can estimate the size of storing events using NLO +1j $\,$

contribution from Marek Schönherr

e.g. incl. H at NNLO (H+j at NLO with SHERPA)

estimated number of events to reach target accuracy of 0.1% $$\sigma^{\rm NNLO}=44{\rm pb}$$				
QT,cut	lpha -dipole	#events	Ntuple size	$\sigma(q_T > q_{T,\mathrm{cut}})$
0.5	0.007	1.6 ×109	1.6 TB	-5.9 pb
1	0.007	0.8 ×109	0.8 TB	34.0 pb
	I	0.4 ×109	0.4 TB	35.4 pb
2	0.007	0.4 × 1 0 ⁹	0.4 TB	49.5 pb

convergence improved by tuning the phase space occupied by the counter-terms $(\alpha$ -dipole)

more stable for $q_T \sim I - 2GeV$

High-precision wishlist

Propagation of NNLO results

Summary

NNLO *N*-tuple test case

Detailed study of N tuples for NNLO case

$e^+e^- \rightarrow$ 3 jets with EERAD3

implement N tuples and investigate

- required event number / storage size
- appropriate format
- reweighting procedure for different scales

task force: Gudrun Heinrich, Daniel Maitre, Simon Badger

High-precision wishlist

Propagation of NNLO results

Summary

Outline

1 NLO EW technical comparisons

- 2 High-precision wishlist
- Propagation of NNLO results

Propagation of NNLO results

Summary

Summary

Described three Loops and Multilegs TH projects for Les Houches 2015

- comparison of NLO EW automated calculations
- update and priorities of high-precision wishlist
- study options for propagation of NNLO results

other Loops and Multilegs TH projects started here

- comparison of scale choices at fixed order for W + jets MINLO vs. H_T/2 Simon Badger, Daniel Maitre
- comparison of NNLO vs. LoopSim for W + jets Daniel Maitre, Frank Petriello

Propagation of NNLO results

Summary continued

much more work needed for LHC13:

higher-order QCD: see introductory talk of Simon Badger

- NNLO beyond 2 \rightarrow 3 requires a lot of work
- comparison between fixed order NNLO and NLO MC techniques

electroweak corrections

- combination with NNLO,... QCD corrections
- matching to parton showers including QED effects
- EW effects in PDFs (NNPDF2.3QED, other sets to come)
- NNLO QCD×EW and NNLO EW corrections for precision observables
- treatment of final-state photons (see also subgroup: photon studies for direct photon measurements)