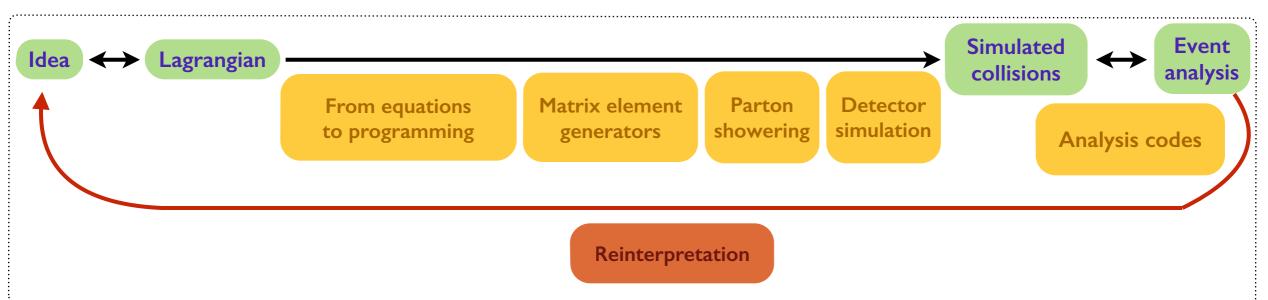


Les Houches Physics @ TeV Colliders 2015 BSM session: Tools & MC

Benjamin Fuks & Sezen Sekmen


IPHC / U. Strasbourg - KNU

Les Houches

19 June 2015

Beyond the Standard Model tools for collider physics

♦ A comprehensive approach to Monte Carlo simulations has been built over the last decades.

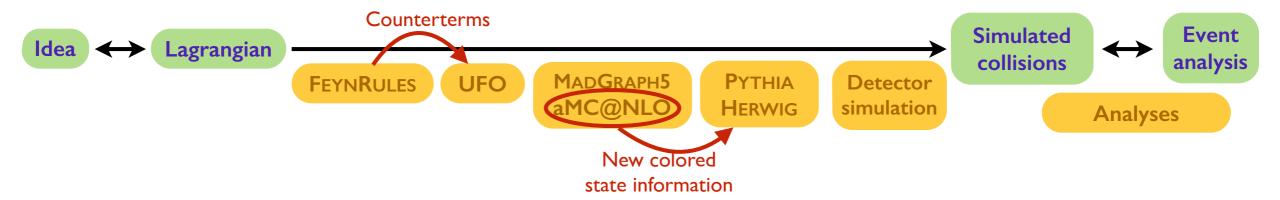
- Past efforts mainly focusing on communication
 - ❖ Connecting theory and matrix element generators: computer programs and SLHA (spectrum)
 - ❖ Connecting matrix element generators to parton showering algorithms (LHE)
 - Connecting data to theory: recasting / reinterpretation

The menu of the last 10 days

- ♦ What has been worked on in this Les Houches BSM tools session
 - * From theory to Monte Carlo tools: extension of the SLHA
 - * Automatic matrix element generators: QCD NLO calculations for new physics
 - ❖ Detector simulation: development of a super-fastsim concept
 - * Reinterpretation: presentation of LHC searches to be used by theorists
 - Physics examples: see the other presentations (sorry, this is tools only)
- ♦ In this presentation:
 - 1. Physics models on which we have focused & the SLHA extension
 - 2. NLO corrections for new physics
 - 3. A very fast detector simulator
 - 4. The 'LHAAD'
 - 5. More tools & summary of the summary

SLHA / New physics models

- Extensions and discussions on existing accords
 - * SLHA extension: including cross section information


```
XSECTION SQRTS PDG_CODE1 PDG_CODE2 NF PDG_CODE3 ....
  SCALE SCHEME QCD ORDER EW ORDER KAPPA F KAPPA R PDF ID VALUE CODE VERSION
```

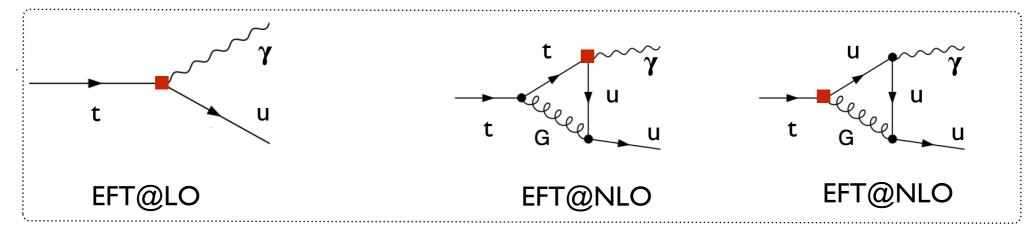
- * Cross section calculator players to be contacted for commenting the proposal
- ★ Finalization expected mandatory for the proceedings

- ◆ Interests of the BSM and Higgs groups: definition of the models to implement
 - ❖ Implementations of new (or extensions of) model in the simulation / calculation tools
 - ★ Higgs effective field theory (developments in aMC@NLO & HIGLU)
 - ★ Loop-induced (N)MSSM Higgs process
 - ★ Minimal and next-to-minimal dark matter simplified models (see the DM@LHC group)
 - **★** Vector like quarks

Automated NLO calculations with MADGRAPH5_aMC@NLO

Automatic NLO QCD calculations with aMC@NLO: the `how to?' for new physics

- How does it work?
 - ♣ FEYNRULES is linked to the NLOCT module
 - ★ Calculation of UV and R₂ counterterms with the help of FEYNARTS / FORMCALC
 - ★ Export of the information to the UFO
 - Matching to parton showers
 - ★ Monte Carlo counterterms associated with the new colored states are included
 - ★ Restrictions on the parton showers (PYTHIA8, HERWIG++)


The NLO BSM model library is mostly empty: many extensions started during this LH

NLO corrections for Higgs effective field theories (1/2)

- Higgs effective field theories
 - * QCD corrections: series expansion both in the strong coupling and the effective scale

$$\sigma \approx I$$
 + $O(\alpha_s)$ + $O(I/\Lambda^2)$ + $O(\alpha_s/\Lambda^2)$
 \downarrow \downarrow \downarrow \downarrow
SM@LO SM@NLO EFT@LO EFT@NLO

- * EW corrections: treatment of the large Sudakov logs
- * Efforts have been put in the implementation of both QCD and EW NLO effects
- Issue: operator mixings
 - * The structure of a given operators can be generated from another operator
 - ★ Example: gtu (NLO QCD) corrections to the \u03c4tu operator

❖ Care is needed when dealing with a subset of operators (for divergence cancellations)

NLO corrections for Higgs effective field theories (2/2)

◆ <u>Automatic</u> NLO QCD corrections: simplifications with five operators

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \frac{i\bar{c}_W}{g\Lambda^2} \big[\Phi^\dagger T_{2k} \overleftrightarrow{D}^\mu \Phi \big] D^\nu W^k_{\mu\nu} + \frac{i\bar{c}_{\scriptscriptstyle HW}}{\Lambda^2} \big[D^\mu \Phi^\dagger T_{2k} D^\nu \Phi \big] W^k_{\mu\nu} \\ + \frac{i\bar{c}_B}{g'\Lambda^2} \big[\Phi^\dagger \overleftrightarrow{D}^\mu \Phi \big] \partial^\nu B_{\mu\nu} + \frac{i\bar{c}_{\scriptscriptstyle HB}}{\Lambda^2} \big[D^\mu \Phi^\dagger D^\nu \Phi \big] B_{\mu\nu} + \frac{\bar{c}_\gamma}{\Lambda^2} \big[\Phi^\dagger \Phi - \frac{1}{2} v^2 \big] B^{\mu\nu} B_{\mu\nu} \\$$

- ❖ Validation achieved (comparison with MCFM)
- \blacktriangleright NNLO inclusive σ: the $G\mu\nu$ $G^{\mu\nu}$ Φ^2 operator is now included in HiGLU [Spira et al.].
- ♦ Monte-Carlo-based physics studies on-going (see the Higgs summary talk)
 - VH production
 - ❖ di-Higgs production
 - ❖ VBF Higgs production

aMC@NLO model spread among the participants

- ◆ Extension to other operators (e.g., CP-odd ones)
- → Basis issues? ➤ not relevant anymore

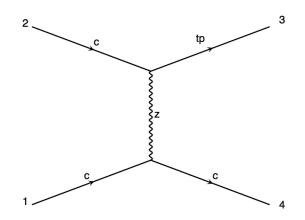
[BF, Mawatari, Mimasu, Riva, Sanz]

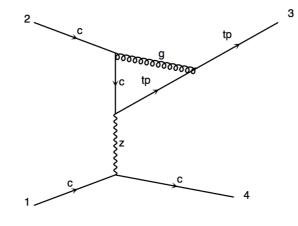
- ❖ The ROSETTA framework is being finalized
- Any choice among the Higgs, the SILH and the Warsaw bases is fine
- ♣ Interface to eHDECAY, Monte Carlo tools, fitting tools, etc.
- ◆ Treatment of the electroweak corrections

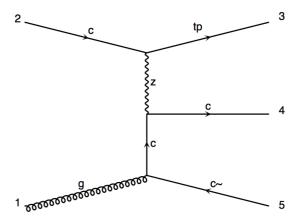
*A document is in preparation: focus on the case where large scales are involved

[Spira et al.]

QCD NLO corrections for vector-like quark production

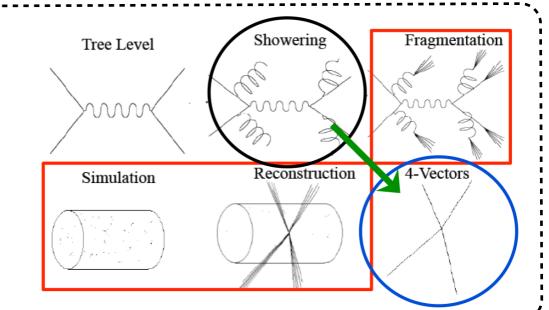

◆ Vector-like quarks (on-going validation)


[Cacciapaglia, Deandrea, BF]


- Extension of the leading order parameterization initiated in 2013
- Focus on NLO QCD corrections

$$\begin{split} \mathcal{L} &= \kappa_{T} \left\{ \sqrt{\frac{\zeta_{i} \xi_{W}^{T}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[\bar{T}_{L/R} W_{\mu}^{+} \gamma^{\mu} d_{L/R}^{i} \right] + \sqrt{\frac{\zeta_{i} \xi_{Z}^{T}}{\Gamma_{Z}^{0}}} \frac{g}{2c_{W}} \left[\bar{T}_{L/R} Z_{\mu} \gamma^{\mu} u_{L/R}^{i} \right] - \sqrt{\frac{\zeta_{i} \xi_{H}^{T}}{\Gamma_{W}^{0}}} \frac{M}{v} \left[\bar{T}_{R/L} H u_{L/R}^{i} \right] \right\} \\ &+ \kappa_{B} \left\{ \sqrt{\frac{\zeta_{i} \xi_{W}^{B}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[\bar{B}_{L/R} W_{\mu}^{-} \gamma^{\mu} u_{L/R}^{i} \right] + \sqrt{\frac{\zeta_{i} \xi_{Z}^{B}}{\Gamma_{Z}^{0}}} \frac{g}{2c_{W}} \left[\bar{B}_{L/R} Z_{\mu} \gamma^{\mu} d_{L/R}^{i} \right] - \sqrt{\frac{\zeta_{i} \xi_{H}^{B}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[\bar{B}_{R/L} H d_{L/R}^{i} \right] \right\} \\ &+ \kappa_{X} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[\bar{X}_{L/R} W_{\mu}^{+} \gamma^{\mu} u_{L/R}^{i} \right] \right\} + \kappa_{Y} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[\bar{Y}_{L/R} W_{\mu}^{-} \gamma^{\mu} d_{L/R}^{i} \right] \right\} + h.c. \; . \end{split}$$

To-be-initiated physics study: single vector like quark production



- ♣ How is the LHC sensitive to this channel?
- Properties of the produced jets?

FALCON: a very fast detector simulator

[Prosper, Sekmen et al.]

- Detector simulation is time consuming
 - Could we get rid of it?
 - Mapping of partonic-level to reconstructed-level events (transfer functions)
 - Maps are designed by using (would-be) fullsim events from Delphes

- First try for making the idea concrete has been initiated
 - ❖ Making the DELPHES output humain readable (LHE-like)
 - ❖ Using the TURTLE program as a reader of that file, using the binary partitioning method
 - Build the code constructing the maps
 - ★ Jet algorithm to be applied on the parton-level objects?
 - ★ DeltaR method?
 - ❖ Provide a code returning a list of reconstructed objects from a partonic event
 - * Beta version and tests on the feasibility to be achieved for the proceedings

LHC analysis reinterpretations

- ◆ Growing interest by the theory community to reinterpret LHC results
 - ❖ Testing more theories than those picked in the experimental papers
 - Anyone not in a collaboration must be able to understand what has been done in an analysis
 - ❖ Many tools are already available on the market (but with a limited set of analyses implemented)
 - ♣ LHC legacy: the analyses and the results ➤ make the best out of them

Why a Les Houches Accord on Analysis Description?

- ◆ Picking up an experimental publication
 - Reading
 - Understanding

- ♦ Writing the analysis code in the tool internal language
- Relatively easy
- ◆ Getting the information missing from the publication for a proper validation
 - * Efficiencies (trigger, electrons, muons, b-tagging, JES, etc.)
 - \star Including p_T and/or η dependence
 - **★** Accurate information
 - ❖ Detailed cutflows for some well-defined benchmark scenarios
 - ★ Exact definition of the benchmarks (SLHA spectra)
 - ★ Event generation information (cards, tunes, LHE files if possible)
 - * Expected number of events in each region and cross sections
 - ♣ Digitized histograms (e.g., on HEPDATA)

◆ Comparing tools and real life

LHAAD: Les Houches Accord on Analysis Description

[The session 2 tools working group]

- Development of a way to provide the information on the analysis in a readily form.
 - ❖ The analysis is described following a text format
 - **★** Two similar options so far (to be merged in one for the proceedings)
 - * Blocks for object definitions, functions and methods, selections, region definitions
 - ★ Regions are defined from a combination of cut blocks
 - ❖ Validation: detailed cutflows for specific benchmarks must be provided in the description
 - Must be endorsed by the experimental collaborations
 - ★ Small amount of work to make the analysis useable by the TH community
 - * Finalization of the recommendations to be achieved for the proceedings

- Presentation of results for specific new physics scenario
 - **Structure for the cutflows, the errors, etc.**
 - ❖ Information on how to (or not to) combine signal regions / analyses

The summary of the summary

- New physics theory implementations in the Monte Carlo tools
 - NLO-QCD is not yet a standard, but this may happen soon
 - * Several model implementations have been initiated (aim: Monte Carlo studies)
 - Specific treatment of the EFTs
- **♦** Communication between tools
 - SLHA: extension to include cross section information
 - * LHAAD: design a mean to encapsulate efficiently the description of an experimental analysis
- ◆ Development of a novel detector simulation framework (FALCON)
 - Starting from parton-level events and mapping to fully reconstructed events
- ♦ But also...
 - * Tutorials: AMC@NLO, CHECKMATE, MADANALYSIS 5, PYTHIA 8, president card game, etc.
 - ❖ Spectrum generator: issues on the Higgs mass calculations
 - ♣ Many drinks ...

Thanks!

Thanks to the organizers for the great time!!!