

Constraining BSM models with 'Standard Model' measurements

<u>Jon Butterworth</u>, David Grellscheid (IPPP), Michael Krämer, Björn Sarrazin (Aachen), David Yallup (UCL) Les Houches

20 June 2017

Precision 'Standard Model' Measurements

- They should not (and mostly do not) assume the SM
- They agree with the SM
- Thus they can potentially exclude extensions

20/6/2017

Precision 'Standard Model'

Measurements

- They should not (and mostly do not) assume the SM
- They agree with the SM
- Thus they can potentially exclude extensions

"Unfolding"

- Some people really don't seem to like it...
- If the cross section is well-defined, unfolding and its uncertainties can be well-defined
 - Fiducial region, matches the experimental acceptance well
 - True final-state obects
- Both mandate simulation of the full final state

Key tools:

Strategy

- Use measurements shown to agree with the Standard Model
 - Not a search! Guaranteed not to find anything
 - Measurements take longer, but more general and less model dependent
 - (Currently) assume the data = the background!

Will miss this kind of thing...

Although we probably want to miss it...

Strategy

- Use measurements shown to agree with the Standard Model
 - Not a search! Guaranteed not to find anything
 - Measurements take longer, but more general and less model dependent
 - (Currently) assume the data = the background!
- Key for constraining new models if there is a signal (unintended consequences)
- Key for constraining scale of new physics if there is no signal

Statistics

- Construct likelihood function using
 - BSM signal event count
 - Background count (from central value of data points)
 - Gaussian assumption on uncertainty in background count, from combination of statistical and systematic uncertainties
 - BSM signal count error from statistics of generated events (small!)
- Make profile likelihood ratio a la Cowan et al (Asimov data set approximation is valid)
- Present in CL_s method (A. Read)
- Systematic correlations not fully treated take only the most significant deviation in a given plot (conservative)

Dynamic data selection

- SM measurements of fiducial, particle-level differential cross sections, with existing Rivet routines
- Classify according to data set (7, 8, 13 TeV) and into nonoverlapping signatures
- Use only one plot from each given statistically correlated sample
- Jets, W+jets, Z+jets, γ (+jets), γγ, ZZ, W/Z+γ
- Sadly no Missing E_T+jets, not much 8 TeV, no 13 TeV yet, though much is on the way... Also can use suitably modelindependent Higgs and top measurements in future.
- Most sensitive measurement will vary with model and model parameters

Observations on the Rivet routines

- Interesting exercise in testing the assumptions made in the Rivet analysis.
 - Use of explicit neutrino particle codes (instead of missing ET)
 - Prompt/isolated leptons
 - Hidden vetos (not really inclusive?) not mentioned in fiducial phase space

CONTUR Category	Rivet/ Inspire ID	Rivet description
ATLAS 7 Jets	ATLAS_2014_I1325553 [28]	Measurement of the inclusive jet cross-section
	ATLAS_2014_I1268975 [30]	High-mass dijet cross section
	ATLAS_2014_I1326641 [32]	3-jet cross section
	ATLAS_2014_I1307243 [31]	Measurements of jet vetoes and azimuthal decorrelations in dijet events
CMS 7 Jets	CMS_2014_I1298810 [29]	Ratios of jet pT spectra, which relate to the ratios of inclusive, differential jet cross sections
ATLAS 8 Jets	ATLAS_2015_I1394679 [34]	Multijets at 8 TeV
ATLAS 7 Z Jets	ATLAS_2013_I1230812 [35]	$Z + ext{jets}$
CMS 7 Z Jets	CMS_2015_I1310737 [38]	Jet multiplicity and differential cross-sections of $Z{+}\mathrm{jets}$ events
CMS 7 W Jets	CMS_2014_I1303894 [37]	Differential cross-section of W bosons + jets
ATLAS W jets	ATLAS_2014_I1319490 [36]	W + jets
ATLAS 7 Photon Jet	ATLAS_2013_I1263495 [42]	Inclusive isolated prompt photon analysis with 2011 LHC data
	ATLAS_2012_I1093738 [44]	Isolated prompt photon $+$ jet cross-section
CMS 7 Photon Jet	$CMS_2014_I1266056$ [45]	Photon + jets triple differential cross-section
ATLAS 7 Diphoton	ATLAS_2012_I1199269 [43]	Inclusive diphoton $+X$ events
ATLAS 7 ZZ	ATLAS_2012_I1203852 [39]	Measurement of the $ZZ(*)$ production cross-section
ATLAS W/Z gamma	ATLAS_2013_I1217863 [40]	W/Z gamma production

Key tools: Constraints On New Theories Using Rivet

Key tools: Constraints On New Theories Using Rivet

JMB, LH

Simplified Model(s)

- Effective lagrangian including minimal new couplings and particles
- Our starter example: leptophobic Z' with vector coupling to u,d quarks, axial vector to a DM candidate ψ.

$$\mathcal{L} \supset g_{
m DM} \, \overline{\psi} \gamma_\mu \gamma_5 \psi \, Z'^\mu + g_q \sum_q ar{q} \gamma_\mu q \, Z'^\mu$$

Parameter Choices

- Scan in M_{DM} and $M_{Z'}$
- Four pairs of couplings:
 - Challenging: $g_q = 0.25;$ $g_{DM} = 1$
 - Medium: $g_q = 0.375; g_{DM} = 1$
 - Optimistic: $g_q = 0.5;$ $g_{DM} = 1$
 - DM-suppressed $g_q = 0.375$; $g_{DM} = 0.25$

UC

ATLAS Dijet double-differential cross sections (y* < 0.5)

Data Comparisons

Low M_{Z'}, low coupling

- V+jets has unexpectedly good sensitivity at low M₇.
- How low in coupling g_{SM} does this go?

Figure 4: Exclusion heatmap for $g_q = 0.25$, $g_{\rm DM} = 1.0$ from the CONTUR white paper.

C. Donaldson (prelim.)

Figure 6: Exclusion heatmap for $M_{\rm DM} = 600$ GeV and 500,000 events per .yoda file, using data from several 7 TeV and 8 TeV ATLAS and CMS analyses. JMB, LH

Look at "all flavours" model

 $g_q = 0.375$, $M_{DM} = 600$ GeV, $M_{Z'} = 1$ TeV (plots made in Les Houches...)

Look at "all flavours" model

$g_q = 0.375$, $M_{DM} = 600$ GeV, $M_{Z'} = 1$ TeV (plots made in Les Houches...)

Conclusions

- Particle-level measurements not only measure what is happening in our collisions, they constrain what is *not* happening.
- Limit-setting procedure developed; even with conservative treatment of correlations, limits are competitive with dedicated searches using comparable data-sets
- General framework developed:
 - consider all new processes in a given (simplified) model
 - consider all available final states. (e.g. V+jet shows previously unexamined sensitivity to the model considered)

Future work

- Highly scaleable to other models & new measurements – plan continuous rolling development
- Include (latest) Standard Model predictions and uncertainties directly
- Treat correlations better, where available
- See arXiv:1606.05296 (JHEP 2017 078) and references therein, and hepforge.org/contur
- We want your UFO files...