Out-of-Acceptance Treatment: Concept

Measurement bins

There are 2n POIs (I_i and O_i for each measurement bin), but only n observables (the bin yield N_i). So we need some assumption about the O_i in order to measure the I_i :

- **Option 1**: All the O_i are fully correlated to each other \Rightarrow all scale with a global O parameter not constrained by data, so fix to the SM.
- **Option 2**: Each O_i is fully correlated to the corresponding I_i .
- **Option 3**: All the O_i are fully correlated to each other, and to $\Sigma_i I_i$

Out-of-Acceptance: Math

Measured bin yields are N_i = $\Sigma_j m_{ij} I_j + \Sigma_j f_{ij} O_j$ where

- $I_i = L \sigma_i^{fid}$: Fiducial contribution
- $O_i = L.\sigma^{\text{out-of-fid}} = L(\sigma^{\text{tot}} \sigma^{\text{fid}})$: Out-of-fiducial contribution
- $-m_{\mu}$: migration coefficients for the fiducial contributions into reco bins
- f_{ii} : contamination coefficients for non-fiducial contributions
- Option 1 : We assume $O_i = \alpha_i O^{SM}$, with $\alpha_i = O_i^{SM}/O^{SM}$ taken from SM MC $\Rightarrow N_i = \Sigma_j m_{ij} l_j + \Sigma_j f_{ij} \alpha_j O^{SM}$
 - **Option 2**: We assume $O_i = \beta_i I_i$, with $\beta_i = O_i^{SM}/I_i^{SM}$ taken from SM MC $\Rightarrow N_i = \Sigma_j (m_{ij} + \beta_i f_{ij}) I_j$
- Option 3 : We assume $O_i = \gamma_i \Sigma_j I_j$, with $\gamma_i = O_i^{SM} / \Sigma_j I_j^{SM}$ taken from SM MC $\Rightarrow N_i = \Sigma_j m_{ij} I_j + \Sigma_j f_{ij} \gamma_j \Sigma_k I_k = \Sigma_j (m_{ij} + \Sigma_k f_{ik} \gamma_k) I_j$

What can go wrong

- Consider a 1-bin analysis with a spectacularly bad fiducial selection, m=0.1 and f=0.9 \Rightarrow N = 0.1 I + 0.9 O; assume I_{SM} ~ O_{SM} and consider
 - **Case A**: $I_{true} = I_{SM}$ and $O_{true} = O_{SM}$
 - **Case B**: $I_{true} = I_{SM}$ and $O_{true} = 10 O_{SM}$
 - **Case C**: $I_{true} = 10 I_{SM}$ and $O_{true} = 10 O_{SM}$
- Option 1: N = 0.1 I + 0.9 O_{SM}.
 - Case A
 - $I = (N 0.9 O_{SM})/0.1 = (0.1 I_{SM} + 0.9 O_{SM} 0.9 O_{SM})/0.1 = I_{SM} = I_{true}$ accurate
 - $\delta I = sqrt(N)/0.1$: error larger due to low purity
 - Case B: $I = I_{SM} + 81O_{SM} \sim 82 I_{true}$, biased
 - Case C: I = 10 I_{SM} + 81 O_{SM} ~ 91 I_{true} biased
 - **Option 2**: N = $(0.1 + 0.9 O_{SM}/I_{SM})$ | (Option 3 is equivalent in this 1-bin case)
 - Case A:

٠

- $I = N/(0.1 + 0.9 O_{SM}/I_{SM}) = I_{SM} = I_{true}$ accurate
- $\delta I = sqrt(N)/(0.1 + 0.9 O_{SM}/I_{SM})$, error ~ insensitive to purity
- **Case B**: I = (0.1 I_{SM} + 9 O_{SM})/(0.1 + 0.9 O_{SM}/I_{SM}) ~10 I_{true} biased
- Case C: I = (1 I_{SM} + 9 O_{SM})/(0.1 + 0.9 O_{SM}/I_{SM}) = I_{true} accurate