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1 Idea

Here I write in as much detail as possible the computation of relic abundance of dark
matter via freeze-in mechanism. We assume first a simple model containing the following
vertex:

L ⊃ yχ(χ · f̄L)S + h.c. (1)

where χ is a fermion doublet whose quantum numbers are contrated with a SM fermion
f , and S is the DM candidate, a real scalar.

2 Production via decay

The process producing DM here is M → BS, where M is the mother particle, B a particle
belonging to the visible thermal bath, and S is the dark matter. Being so, the Boltzmann
equation for the DM can be written as:

ṅS + 3HnS = production− annihilation (2)

=

∫
d3pM

(2π)32EM

d3pB
(2π)32EB

d3pS
(2π)32ES

(2π)4δ(4)(PM − PB − PS)|M|2

× [fM(1± fB)(1± fS)− fBfS(1± fM)] ,

where nS is the DM number density, H = ȧ/a the Hubble parameter, pi(Pi) the 3-
momentum (4-momentum) of particle i, and Ei its energy; M the amplitude of the
process, and fi the distribution function. In case of fermions (bosons), ± becomes −(+),
corresponding to Fermi-Dirac blocking (Bose-Einstein enhancement).

Assumption #1: initial density of DM particles is zero, such that the annihilation
term can be neglected. This is reasonable when the production rate is so slow that you
never have sufficient DM particles in order for the annihilation term to be non-negligible.
With this, (2) reduces to:

ṅS + 3HnS =

∫
d3pM

(2π)32EM

d3pB
(2π)32EB

d3pS
(2π)32ES

(2π)4δ(4)(PM − PB − PS)|M|2

× fM(1± fB)(1± fS) . (3)
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This is the equation we want to solve next. On the one hand we have the expression for
the width Γ of the M → BS process, for an -a priori- boosted particle :

dΓlab =
(2π)4

2EM
|M|2dΦ, dΦ =

d3pB
(2π)32EB

d3pS
(2π)32ES

δ(4)(PM − PB − PS) (4)

Note that the averaged amplitude squared is not what enters into eq.(3), being |M|2 =
1
gM
|M|2. We can thus rewrite eq.(3) as:

ṅS + 3HnS = gM

∫
d3pM
(2π)3

fMΓlab = gMΓmM

∫
d3pM
(2π)3

fM
EM

. (5)

Here Γ is the usual (CM frame) width.

Assumption #2: In expr.(5) we have neglected Pauli-blocking (Bose-Einstein enhance-
ment) effects, which implies that fB,S � 1 (see expr.3). For the DM this is absolutely
reasonable, whereas for the bath particle B this is less clear1. In any case this is the usual
practice, starting with the original freeze-in reference[1].

Assumption #3: For the distribution function fM we will assume a Maxwell-Boltzmann
(MB) shape, fM = e−(EM−µM )/T . The use of MB distribution means two things: a) we
are neglecting the statistics of the particle M (fermion or boson), and b) we are assuming
that M follows an equilibrium distribution. As for a), this is reasonable for E � T (the
case we will consider below, as you will see). Concerning b), this is less clear, but again,
this is the usual practice (cf. [1],[3]), and the corrections to that are work in progress[2].
On top of that, we will neglect the chemical potential µM , such that fM ≈ e−EM/T . This
is equivalent to say that the change on the total internal energy of the system (visible
bath plus M plus S) by removing/introducing one M particle is negligible, which is not
unreasonable. With these assumptions, we are left with:

ṅS + 3HnS =
1

2π2
gMΓm2

MTK1(mM/T ) , (6)

where K1(x) is the modified Bessel function of the second kind. The LHS of expr.(7) can
be re-expressed as: ṅS +3HnS = sHT dYS

dT
, where s is the entropy density, and YS = nS/s

is the comoving number density (or yield) of the DM. So we have:

YS = − 1

2π2
gMΓm2

M

∫ T0

TR

dT
K1(mM/T )

sH
, (7)

where TR is the reheating temperature and T0 the temperature today. The entropy is
s = (2π2/45)gs∗T

3.

Assumption #4: Considering that the relevant DM production happens at a radiation-
dominated era, we have H ≈ 1.66

√
g∗T

2/MPl, where MPl is the Planck mass. This should
be refined if we start populating DM before reheating time, but in any case if most of

1A solution taking into account these effects will appear soon [2].
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the DM will be created towards the end, where T � TR, then indeed this is a radiation-
dominated period.

The final expression for the yield is thus:

YS ≈
45MPl

4π4 · 1.66

gM
m2
M

Γ

∫ mM/T0

mM/TR

dx x3
K1(x)

gs∗(x)
√
g∗(x)

(8)

The link between today’s relic abundance and yield of DM is:

Ω =
ρ0,S
ρc
≈ mSYS

3.6× 10−9GeV
. (9)

This implies:

YS ≈ 4.3× 10−10

(
Ωh2

0.12

)(
GeV

mS

)
. (10)

2.1 Example#1

Assuming that we have an instantaneous decay at T � mM , then M is at rest and
Γ ≈ y2χM , where we have neglected phase-space, i.e. mM � mB,mS, and yχ is the
coupling of the M −B − S interaction. The lifetime of M would then be:

τM = 2× 10−14 cm

(
1

y2χ

)(
GeV

mM

)
. (11)

For the benchmark mM = 1TeV, yχ = 5× 10−10 and mS = 1 GeV, we get that τM ≈ 80
cm. For those, a reheating temperature TR = 47.5 GeV gives the correct relic abundance
according to (10).
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