

#### Conveners: FC, R. Harlander



## Higgs $\sim 2017$ : a lot of information

- AFTER RUN I / BEGINNING OF RUN II:
- Scalar O<sup>+</sup> particle
- It couples to both fermions and bosons
- All main production mechanisms observed
- Mass known to 0.2% accuracy [ $\rightarrow$  implications for mass shift,  $\Gamma_{\rm H}$ ]
- Overall, good agreement ~10/20% with SM predictions

#### MORE DATA / HIGHER ENERGY REACH

- (Precise) differential distributions are coming in
- Access to tails of distributions (boosted H $\rightarrow$ bb,  $p_{t,H} > 450 \text{ GeV}$ )

# SM Higgs redux

IN THE SM

- the Higgs is a neutral spin 0 particle 🗸
- couplings to fermions ∝ masses ✓
- couplings to  $W/Z \propto$  masses squared  $\checkmark$
- couplings to photons/gluons loop-induced
- HHH coupling  $\propto m_{\rm H}^2$

AND BEYOND...

- in a ``typical'' BSM theory, this is no longer true
- in a ``natural'' BSM theory, expect O(1) modification of Higgs properties
- (as a bonus: in any ``non pathological" theory where  $m_H$  is computable, if Higgs is light new light d.o.f.)

## Precision in the Higgs sector

Looking for NP in the Higgs sector: *very roughly*, NP at a scale  $\Lambda$  induces modifications to SM predictions  $\delta O \sim Q^2 / \Lambda^2$ .

To probe reasonably high ~ TeV scales:

• control to few percent in the bulk of the distributions (Q ~  $m_H$ )

• control to  $\sim 10/20\%$  (or better) in the tails (boosted/off-shell...)

While we are still far from such kind of accuracy from an exp. point of view, such accuracy is not unreasonable in the long run (Run II - HL)

We should match this on the theoretical side...

*"Few percent"*: the theory side  $d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) d\sigma_{part}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{QCD}/Q))$  *Input parameters: ~few percent No good control/understanding of them at this level. LIMITING FACTOR FOR FUTURE DEVELOPMENT* 

HARD SCATTERING MATRIX ELEMENT

• $\alpha_{s} \sim 0.1 \rightarrow$  For TYPICAL PROCESSES, we need Nxx for ~ 10% and NNxx for ~ 1% accuracy. Processes with large color charges (ggF):  $\alpha_{s} C_{A} \sim 0.3 \rightarrow N^{3}xx$ 

•Going beyond that is neither particularly useful (exp. precision) NOR POSSIBLE GIVEN OUR CURRENT UNDERSTANDING OF QCD

### Input parameters: PDFs Modern PDF sets, with LHC data to help constraining the gluon (top





- PDF error reduced to ~ percent in all main channels
- PDF sets seem consistent
- *Time for PDF community to start thinking at new source of errors (TH)?*
- Do scale setting issues in di-jet affect this picture? How much?

### Inclusive quantities

[*Cross section*  $\rightarrow$  *S. Forte's talk; Rapidity distribution*  $\rightarrow$  *M. Ebert's talk*]

• At the few percent level, everything becomes relevant

| $\sigma = 48.58  \text{pb}_{-3.27  \text{pb}  (-6.72\%)}^{+2.22  \text{pb}  (+4.56\%)} \text{ (theory)} \pm 1.56  \text{pb}  (3.20\%)  (\text{PDF} + \alpha_s)  .$ |                                             |               |                       |                     |                    |    |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|-----------------------|---------------------|--------------------|----|--|--|
| $48.58\mathrm{pb} =$                                                                                                                                               | $16.00\mathrm{pb}$                          | (+32.9        | %)                    | (LO, rEF            | T)                 |    |  |  |
|                                                                                                                                                                    | $+20.84\mathrm{pb}$                         | (+42.9)       | %)                    | (NLO, rE            | EFT)               |    |  |  |
|                                                                                                                                                                    | $-2.05\mathrm{pb}$                          | (-4.2)        | %)                    | ((t,b,c),c)         | exact NLO          | C) |  |  |
| 00000000                                                                                                                                                           | $+ 9.56 \mathrm{pb}$                        | (+19.7)       | %)                    | (NNLO,              | m rEFT)            |    |  |  |
|                                                                                                                                                                    | + 0.34 pb                                   | (+0.7)        | %)                    | (NNLO,              | $1/m_t)$           |    |  |  |
|                                                                                                                                                                    | $+ 2.40 \mathrm{pb}$                        | (+4.9)        | %)                    | (EW, QC)            | CD-EW)             |    |  |  |
|                                                                                                                                                                    | + 1.49 pb                                   | (+3.1)        | %)                    | $(N^{3}LO, r$       | EFT)               |    |  |  |
| Todo List: - Full mass dependent NNLO                                                                                                                              |                                             |               |                       |                     |                    |    |  |  |
| - Mixed $\mathcal{O}(lpha lpha_S)$ corrections                                                                                                                     |                                             |               |                       |                     |                    |    |  |  |
| - N3LO PDFs                                                                                                                                                        |                                             |               |                       |                     |                    |    |  |  |
|                                                                                                                                                                    |                                             |               |                       |                     |                    |    |  |  |
| $\delta(	ext{scale})$                                                                                                                                              | $\delta(	ext{trunc})$ $\delta(	ext{trunc})$ | (PDF-TH)      | $\delta(\mathrm{EW})$ | $\delta(t,b,c)$     | $\delta(1/m_t)$    |    |  |  |
| $^{+0.10~\rm{pb}}_{-1.15~\rm{pb}}$                                                                                                                                 | $\pm 0.18$ pb                               | $\pm 0.56$ pb | $\pm 0.49$ pb         | $\pm 0.40~{\rm pb}$ | $\pm 0.49~{ m pb}$ |    |  |  |
| $^{+0.21\%}_{-2.37\%}$                                                                                                                                             | $\pm 0.37\%$                                | $\pm 1.16\%$  | $\pm 1\%$             | $\pm 0.83\%$        | $\pm 1\%$          |    |  |  |

• New developments:  $N^{3}LO + N^{3}LL' d\sigma/dy$ , [Ebert, Michel, Tackmann (2017)]  $\rightarrow$  see Markus' talk

- Good (N<sup>3</sup>LO + N<sup>3</sup>LL) QCD control, in the HEFT approx
- Mass (t,b) effects?
   → see M.
   Wiesemann's talk

• EWxQCD?

[Mistlberger, QCD@LHC2016]

## Recent progress: b-mass effects@NLO

Largish non-Sudakov double logs  $m_b^2/m_h^2 (\log^2(m_h^2/m_b^2), \log^2(p_{\perp}^2/m_b^2)) \sim 10^{-1}$ 



- Large corrections to tb interference,
   ~ to HEFT Kfactor
- Logs do not seem to exponentiate, but not so big that resummation is necessary

- Best prediction for  $p_{t,H}$  at small  $p_{T?}$  Interplay with  $p_t$  resummation...
- Best way to include these effects, e.g. for NNLOPS...

#### Recent progress: the Higgs pt spectrum [Talks by C. Muselli and L. Rottoli, M. Wiesemann for EFT]

NNLO prediction at high pt matched to N<sup>3</sup>LL resummation, HEFT



- Perturbative results very stable (resummation effects: 25% at  $p_T = 15$  GeV, ~0% at  $p_T = 40$  GeV). Similar pattern for jet veto (and Z  $p_t$ )
- Significant reduction of perturbative uncertainties from NLO+NNLL to NNLO+NNLL. Addition of N<sup>3</sup>LL effects does not lead to substantial error decrease. Is this understood? How do these predictions compare to e.g. NNLOPS?

## Exploring the tails: boosted Higgs



- Very recent CMS analysis for boosted H→bb
- Very nice result for boosted Z, robust analysis
- Jet substructure...

[Discussion about it on Saturday]

• ACCESS TO THE HIGH-P<sub>T</sub> HIGGS SEEMS FEASIBLE

## Boosted Higgs: theoretical picture



| σ <sub>gg</sub> (p <sub>t</sub> >p <sub>t,cut</sub> | ) = 1 fb                     | 1 ab                         |
|-----------------------------------------------------|------------------------------|------------------------------|
| bb                                                  | p <sub>t,cut</sub> ~ 600 GeV | p <sub>t,cut</sub> ~ 1.5 TeV |
| ττ                                                  | ~ 400 GeV                    | ~ 1.2 TeV                    |
| 212v                                                | ~ 300 GeV                    | ~ 1 TeV                      |
| γγ                                                  | ~ 200 GeV                    | ~ 750 GeV                    |
| 41                                                  | ~ 50 GeV                     | ~ 450 GeV                    |

- •Rates are low, but not insignificant
- Very sensitive to anomalous ggH coupling
- •Can help resolving flat directions in ggH, ttH couplings
- UNFORTUNATELY, WE ONLY KNOW IT AT LO
- NLO would require complicated 2-loop amplitudes, currently under investigation → J. Henn

#### Boosted Higgs: what can we say [Talks by C. Muselli and L. Rottoli]

At high pt, real emission dominance. Can use this to improve description





Very different methods obtain qualitatively similar result ( $K_{full} \sim K_{HEFT}$ ). Can we be more quantitative? Detailed comparisons?

#### Another tail: off-shell Higgs [Talk by N. Kauer]

Recent result: signal H $\rightarrow$ VV, bkd gg $\rightarrow$ VV and interference @NLO. Background@NLOPS



[Alioli, FC, Luisoni, Röntsch (2016)]

- NLOPS vs merged LOPS comparisons
- qg effects@NLO
- Moving past the top threshold [see e.g. Czakon et al (2016)]
- EW corrections?

## Going differential: fiducial, STXS, jets...

[several talks in the next days]



- Model dependence of the acceptances
- Best tools for acceptances, errors, correlations...

iding principles in the definition of simplified template cross section bins it is not supposed to (e.g. H+3j@NLO...). Further studies?

# Other channels: VBF

[Talk by F. Dreyer]

Inclusive rate known to N<sup>3</sup>LO [Dreyer, Karlberg (2016)]. Moderate corrections



- Large corrections in the VBF fiducial region [Cacciari, Dreyer, Karlberg, Salam, Zanderighi (2016)]
- Not always captured by PS. Most striking example: Δy<sub>jj</sub>
- Partially understood as non-trivial jet dynamics [Rauch, Zeppenfeld (2017)]
- Are these observables under control? More PS comparisons?
- To which extent do we control non-factorizable effects?
- ggF contamination to VBF? ( $\rightarrow$  Andersen et al, arXiv: 1706.01002)

### Other channels:VH

Recent results: NNLO production x NNLO decay, massless *b* 



Ferrera, Somogyi, ramontano (2017)

• Large effect of NNLO decay (gluon radiation)

- Massless vs massive decays
- Unrelated:  $gg \rightarrow HZ@NLO$  with full  $m_t$  dependence (e.g. with HH technology?)

## Other channels: ttH

- Known to NLOQCD (+NNLL) + NLOEW, including off-shellness and interference
- Fiducial cuts enhance tails → NLOEW
- $d\sigma \propto y_t^2$  no longer true @NLOEW
- Proper description of background problematic. Most famous example: ttbb

| Selection   | Tool              | $\sigma_{\rm NLO}[{\rm fb}]$ | $\sigma_{\rm NLO+PS}  [{\rm fb}]$ | $\sigma_{ m NLO+PS}/\sigma_{ m NLO}$ |  |
|-------------|-------------------|------------------------------|-----------------------------------|--------------------------------------|--|
| $n_b \ge 1$ | SHERPA+OPENLOOPS  | $12820^{+35\%}_{-28\%}$      | $12939^{+30\%}_{-27\%}$           | 1.01                                 |  |
|             | MADGRAPH5_AMC@NLO |                              | $13833^{+37\%}_{-29\%}$           | 1.08                                 |  |
|             | POWHEL            |                              | $10073^{+45\%}_{-29\%}$           | 0.79                                 |  |
| $n_b \ge 2$ | Sherpa+OpenLoops  | $2268^{+30\%}_{-27\%}$       | $2413^{+21\%}_{-24\%}$            | 1.06                                 |  |
|             | MadGraph5_aMC@NLO |                              | $3192^{+38\%}_{-29\%}$            | 1.41                                 |  |
|             | POWHEL            |                              | $2570^{+35\%}_{-28\%}$            | 1.13                                 |  |

• Shower effects enhanced in the Higgs region...

## Beyond single H: di-Higgs

• Full NLO result, with exact top mass dependence [Borowka et al (2016)]

• NNLO in the  $m_t \rightarrow limit$  [de Florian et al (2016)]



- Reasonable approximations to extend 1/mt result beyond the top threshold (rescaled Born, exact real radiation) can fail quite significantly
- Exact K-factor much less flat than for m<sub>t</sub> approximations

- *Can we understand why approx fail (e.g. large box/triangle cancellations?)*
- Best way to include NNLO<sub>HEFT</sub>?
- Use this technology for other processes, and gain extra information?

### Final remarks

- A lot of progress for Higgs sector predictions. Many new results from last LH
- Still, many issues still need to be solved / investigated
- According to interests / expertise of the participants, try to tackle some of them
- Ideally, coordination with LHCHXSWG and CERN Theory Institute

**ENJOY LES HOUCHES!**