Conclusions

Parton shower uncertainties

Marek Schönherr

Universität Zürich

Les Houches 06 June 2017

Conclusions

Reweighting

Parameters

parametric e.g. $\alpha_s(m_Z)$, m_t , PDF

perturbative e.g. NLO, NLL, leading- $N_c
ightarrow \mu_R$, μ_F , μ_Q

algorithmic e.g. evolution variable, recoil schemes, matching scheme

Explicit variations

- can be done for any scale or PDF dependence
- functional form can be changed
- separate run (independent calculation) for every variation

On-the-fly variations

Bothmann, MS, Schumann arXiv:1606.08753

- can be done for μ_R , μ_F , α_s & PDF dependence of ME & PS
- functional form can currently not be changed
- full syntax, cf. Manual SCALE_VARIATIONS 0.25,0.25 4.,4.
 PDF_VARIATIONS NNPDF30_nnlo_as_0118[all]
- store in HEPMC weight container using LH'13 naming convention

Reweighting	Parton shower in single mutliplicity	Parton showers in multijet merging	Timings	Conclusions

Reweighting

ME reweighting

- straight forward dependence on μ_{R} , μ_{F} , PDF, α_{s}
- exception: PDF ratios in multijet merging

PS reweighting

$$K_{n}(t_{2}, t_{1}; k_{\alpha_{s}}, k_{f}; \alpha_{s}, f) = \sum_{ij} \sum_{k} \alpha_{s}(k_{\alpha_{s}}t) K'_{ij,k}(t, z) \frac{f_{c'}(\frac{t_{c}}{x}, k_{f}t)}{f_{c}(\eta_{c}, k_{f}t)}$$

• variation $\alpha_{s} \to \tilde{\alpha}_{s}, f \to \tilde{f}, k_{\alpha_{s}} \to \tilde{k}_{\alpha_{s}} \text{ and/or } k_{f} \to \tilde{k}_{f} \text{ gives}$

ightarrow probability to accept $P_{
m acc} = rac{{
m K}}{{
m K}}
ightarrow { ilde P}_{
m acc} = q_{
m acc} P_{
m acc}$

$$q_{\rm acc} \equiv \frac{\tilde{\alpha}_{\sf s}(\tilde{k}_{\alpha_{\sf s}}t)}{\alpha_{\sf s}(k_{\alpha_{\sf s}}t)} \frac{\tilde{f}_{c'}(\frac{\eta_c}{x}, \tilde{k}_f t)}{f_{c'}(\frac{\eta_c}{x}, k_f t)} \frac{f_c(\eta_c, k_f t)}{\tilde{f}_c(\eta_c, \tilde{k}_f t)}$$

 \rightarrow probability to reject $P_{\rm rej} \rightarrow \tilde{P}_{\rm rej} = q_{\rm rej} P_{\rm rej} = 1 - \tilde{P}_{\rm acc}$

$$q_{
m rej} \equiv \left[1 + \left(1 - q_{
m acc}
ight) rac{P_{
m acc}}{1 - P_{
m acc}}
ight]$$

• scale compensation terms (LH'13) not included (to aggressive)

Parton shower in single multiplicity

Free choices

- ME scales free μ_R , μ_F
- PS starting scale free μ_Q

Fixed values

- μ_Q must respect angular ordering wrt. to existing colour lines in the starting configuration, e.g. \hat{s} in dijets is a bad choice
- $\mu_{\rm Q}$ must ensure all radiation is softer than existing colour lines in the starting configuration
- PS $\alpha_{\rm s}$ argument fixed to CMW considerations
- PS PDF argument should be related to t

NLOPS

- consistent evolution between matched emissions and all other emissions
- scales in hard event must not destroy resummation properties

Reweighting – closure test – LOPS

Bothmann, MS, Schumann ar Xiv: 1606.08753

Reweighting – closure test – LOPS

Bothmann, MS, Schumann ar Xiv: 1606.08753

 \rightarrow reweighting two emission sufficient for this observable

Reweighting – closure test – NLOPS

Bothmann, MS, Schumann ar Xiv: 1606.08753

Reweighting – closure test – NLOPS

Bothmann, MS, Schumann ar Xiv: 1606.08753

 \rightarrow reweighting two emission sufficient for this observable

closure test with
$$n_{\rm PS}=0,1,2,3,4,8,\infty$$

•
$$\alpha_{s}(m_{Z}) = 0.120$$

 \downarrow
 $\tilde{\alpha}_{s}(m_{Z}) = 0.128$

*n*_{PS} needed obs.
 dependent

closure test with $n_{\rm PS}=0,1,2,3,4,8,\infty$

•
$$\alpha_{s}(m_{Z}) = 0.120$$

 \downarrow
 $\tilde{\alpha}_{c}(m_{Z}) = 0.128$

*n*_{PS} needed obs.
 dependent

closure test with
$$n_{\rm PS}=0,1,2,3,4,8,\infty$$

•
$$\alpha_{s}(m_{Z}) = 0.120$$

 \downarrow
 $\tilde{\alpha}_{s}(m_{Z}) = 0.128$

*n*_{PS} needed obs. dependent

Reweighting in multijet merged calculation Multijet merging

- separate phase space into two regions
 - 1) small t, trust PS for emission pattern
 - 2) large t, replace PS emission pattern by ME
 - \rightarrow multijet merging is improvement of PS emission pattern
- higher multi MEs replacing PS need to recover PS resummation \rightarrow limits freedom in scale defintions, PDF/ α_s parametrisations
- \Rightarrow consistency essential
 - same scales, same PDF, same $\alpha_{\rm s}$ in ME and PS

Free choices

- · most scales fixed through consistency with parton shower
- freedom in core: $\mu_{R,\text{core}}$, $\mu_{F,\text{core}}$, μ_{Q}
- freedom in \mathbb{H} -events: μ_R , μ_F
- freedom in unordered configurations
- some freedom in Q_{cut}

Reweighting – closure test – MEPS

Bothmann, MS, Schumann arXiv:1606.08753

Reweighting – closure test – MEPS@NLO

Bothmann, MS, Schumann arXiv:1606.08753

Time [s]

Timings in $pp \rightarrow \ell^+ \ell^- + \leq$ 4jets MEPs (LO) – ME only

weighted events

- low baseline per event timing (25s/1k)
- constant offset per computed variation
- \Rightarrow 217 vars. \rightarrow factor 38

(partially) unweighted events

- high baseline per event timing (730s/1k)
- constant offset per computed variation
- \Rightarrow 217 vars. \rightarrow factor 2.2

 \rightarrow time to compute variations independent of event generation mode

 \Rightarrow huge gain for standard (partially) unweighted events

Marek Schönherr

Timings of parton shower reweightings

- timings independent of weighting/unweighting
- when reweighting the complete evolution 10% gain
 - \rightarrow but spread of weights

SHERPA-2.2.3

- On-the-fly variations for
 - renormalisation and factorisation scales in ME
 - PDF and $\alpha(m_Z)$ parametrisation in ME

available since SHERPA-2.2.0

- On-the-fly variations for
 - renormalisation and factorisation scales in PS
 - PDF and $\alpha(m_Z)$ parametrisation in PS

in experimental state available since SHERPA-2.2.1 (full in SHERPA-2.3.0)

- PS variation is costly due to recalculation of all acceptance and rejection probabilities, cap at $n_{PS} = 2$ emissions beware resummation sensitive observables
- neither HEPMC-2.06 nor HEPMC-3 fully support this (only one cross section object, etc.)

http://sherpa.hepforge.org

Reweighting	Parton shower in single mutliplicity	Parton showers in multijet merging	Timings	Conclusions

Thank you for your attention!

LO trivial

$$\langle O \rangle^{\mathsf{LO}} = \int \mathrm{d} \Phi_B \ \mathrm{B}(\Phi_B) \ O(\Phi_B)$$

NLO, work in CS subtraction, independent of loop generator

 book-keep 18 weight components (2 VI, 16 KP) R and each D_S transform same as B

LO trivial

 $\mathbf{B}(\Phi_B) \ = \ \alpha_{\mathsf{s}}^n(\mu_R^2) \ f_{\mathsf{a}}(x_{\mathsf{a}},\mu_F^2) \ f_{\mathsf{b}}(x_{\mathsf{b}},\mu_F^2) \ \mathbf{B}'(\Phi_B)$

NLO, work in CS subtraction, independent of loop generator

 book-keep 18 weight components (2 VI, 16 KP) R and each D_S transform same as B

LO trivial

$$\mathbf{B}(\Phi_B) = \alpha_s^n(\mu_R^2) f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2) \mathbf{B}'(\Phi_B)$$

• NLO, work in CS subtraction, independent of loop generator

$$\langle O \rangle^{\mathsf{NLO}} = \int \mathrm{d}\Phi_B \left[\mathrm{B}(\Phi_B) + \mathrm{VI}(\Phi_B) + \int \mathrm{d}x'_{a/b} \operatorname{KP}(\Phi_B, x'_{a/b}) \right] O(\Phi_B)$$
$$+ \int \mathrm{d}\Phi_R \left[\mathrm{R}(\Phi_R) O(\Phi_R) - \sum_j \mathrm{D}_{S,j}(\Phi_{B,j} \cdot \Phi_1^j) O(\Phi_{B,j}) \right]$$

 book-keep 18 weight components (2 VI, 16 KP) R and each D_S transform same as B

LO trivial

$$\mathbf{B}(\Phi_B) = \alpha_s^n(\mu_R^2) f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2) \mathbf{B}'(\Phi_B)$$

• NLO, work in CS subtraction, independent of loop generator $l_{R} = \log(\mu_{R}^{2}/\mu_{R-r}^{2})$

$$I(\Phi_B) = \alpha_s^{n+1}(\mu_R^2) f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2) \left[VI'(\Phi_B) + c_R'^{(0)} I_R + \frac{1}{2} c_R'^{(1)} I_R^2 \right]$$

 book-keep 18 weight components (2 VI, 16 KP) R and each D_S transform same as B

V

LO trivial

$$\mathbf{B}(\Phi_B) = \alpha_s^n(\mu_R^2) f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2) \mathbf{B}'(\Phi_B)$$

• NLO, work in CS subtraction, independent of loop generator $I_R = \log(\mu_R^2/\tilde{\mu}_{P,re}^2)$

$$\begin{aligned} \operatorname{VI}(\Phi_{B}) &= \alpha_{s}^{n+1}(\mu_{R}^{2}) f_{a}(x_{a}, \mu_{F}^{2}) f_{b}(x_{b}, \mu_{F}^{2}) \left[\operatorname{VI}'(\Phi_{B}) + c_{R}^{\prime (0)} l_{R} + \frac{1}{2} c_{R}^{\prime (1)} l_{R}^{2} \right] \\ \operatorname{KP}(\Phi_{B}, x_{a'b}^{\prime}) &= \alpha_{s}^{n+1}(\mu_{R}^{2}) \left[\left(f_{a}^{q} c_{F,a}^{\prime (0)} + f_{a}^{q}(x_{a}^{\prime}) c_{F,a}^{\prime (1)} + f_{a}^{g} c_{F,a}^{\prime (2)} + f_{a}^{g}(x_{a}^{\prime}) c_{F,a}^{\prime (3)} \right) f_{b}(x_{b}, \mu_{F}^{2}) \right. \\ &+ f_{a}(x_{a}, \mu_{F}^{2}) \left(f_{b}^{q} c_{F,b}^{\prime (0)} + f_{b}^{q}(x_{b}^{\prime}) c_{F,b}^{\prime (1)} + f_{b}^{g} c_{F,b}^{\prime (2)} + f_{b}^{g}(x_{b}^{\prime}) c_{F,b}^{\prime (3)} \right) \right] \\ c_{F,a/b}^{\prime (i)} &= \tilde{c}_{F,a/b}^{(i)} + \bar{c}_{F,a/b}^{(i)} l_{F} \end{aligned}$$

• book-keep 18 weight components (2 VI, 16 KP) R and each D_S transform same as B same as used in SHERPA NTUPLES

$Q_{\rm cut}$ dependence of TeV-scale observables

