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Reweighting
Parameters

parametric e.g. αs(mZ ), mt , PDF

perturbative e.g. NLO, NLL, leading-Nc → µR , µF , µQ

algorithmic e.g. evolution variable, recoil schemes, matching scheme

Explicit variations

• can be done for any scale or PDF dependence

• functional form can be changed

• separate run (independent calculation) for every variation

On-the-fly variations Bothmann, MS, Schumann arXiv:1606.08753

• can be done for µR , µF , αs & PDF dependence of ME & PS

• functional form can currently not be changed

• full syntax, cf. Manual
SCALE VARIATIONS 0.25,0.25 4.,4.

PDF VARIATIONS NNPDF30 nnlo as 0118[all]

• store in HEPMC weight container using LH’13 naming convention
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Reweighting
ME reweighting

• straight forward dependence on µR , µF , PDF, αs

• exception: PDF ratios in multijet merging
PS reweighting

Kn(t2, t1; kαs , kf ;αs, f ) =
∑
ij

∑
k

αs(kαst)K′
ij,k(t, z)

fc′(
ηc
x , kf t)

fc(ηc , kf t)

• variation αs → α̃s, f → f̃ , kαs → k̃αs and/or kf → k̃f gives
→ probability to accept Pacc = K

K̂
→ P̃acc = qaccPacc

qacc ≡
α̃s(k̃αst)

αs(kαst)

f̃c′(
ηc
x , k̃f t)

fc′(
ηc
x , kf t)

fc(ηc , kf t)

f̃c(ηc , k̃f t)

→ probability to reject Prej → P̃rej = qrejPrej = 1− P̃acc

qrej ≡
[

1 + (1− qacc)
Pacc

1− Pacc

]
• scale compensation terms (LH’13) not included (to aggressive)
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Parton shower in single multiplicity
Free choices

• ME scales free µR , µF

• PS starting scale free µQ

Fixed values

• µQ must respect angular ordering wrt. to existing colour lines in the
starting configuration, e.g. ŝ in dijets is a bad choice

• µQ must ensure all radiation is softer than existing colour lines in
the starting configuration

• PS αs argument fixed to CMW considerations

• PS PDF argument should be related to t

NLOPS

• consistent evolution between matched emissions and all other
emissions

• scales in hard event must not destroy resummation properties
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Reweighting – closure test – LOPS
Bothmann,MS,Schumann arXiv:1606.08753
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Reweighting – closure test – LOPS

Bothmann,MS,Schumann arXiv:1606.08753
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Reweighting – closure test – NLOPS
Bothmann,MS,Schumann arXiv:1606.08753
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Reweighting – closure test – NLOPS

Bothmann,MS,Schumann arXiv:1606.08753
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Resummation sensitive observables
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dependent
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Resummation sensitive observables
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Resummation sensitive observables
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Reweighting in multijet merged calculation
Multijet merging

• separate phase space into two regions
1) small t, trust PS for emission pattern
2) large t, replace PS emission pattern by ME

→ multijet merging is improvement of PS emission pattern

• higher multi MEs replacing PS need to recover PS resummation
→ limits freedom in scale defintions, PDF/αs parametrisations

⇒ consistency essential

• same scales, same PDF, same αs in ME and PS

Free choices

• most scales fixed through consistency with parton shower

• freedom in core: µR,core, µF ,core, µQ

• freedom in H-events: µR , µF

• freedom in unordered configurations

• some freedom in Qcut
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Reweighting – closure test – MEPS
Bothmann, MS, Schumann arXiv:1606.08753
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Reweighting – closure test – MEPS@NLO
Bothmann, MS, Schumann arXiv:1606.08753
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Timings in pp → `+`−+ ≤ 4jets MEPS (LO) – ME only
weighted events

• low baseline per event
timing (25s/1k)

• constant offset per
computed variation

⇒ 217 vars. → factor 38

(partially) unweighted events

• high baseline per event
timing (730s/1k)

• constant offset per
computed variation

⇒ 217 vars. → factor 2.2
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µR|F → 7
PDF (NNPDF30) → 100
µR|F+PDF → 107
PDF4LHC (old) → 217

→ time to compute variations independent of event generation mode
⇒ huge gain for standard (partially) unweighted events
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Timings of parton shower reweightings
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parton-level only

+ non-perturbative e�ects

+ unweighting

• timings independent of weighting/unweighting

• when reweighting the complete evolution 10% gain
→ but spread of weights
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SHERPA-2.2.3
• On-the-fly variations for

- renormalisation and factorisation scales in ME
- PDF and α(mZ ) parametrisation in ME

available since SHERPA-2.2.0
• On-the-fly variations for

- renormalisation and factorisation scales in PS
- PDF and α(mZ ) parametrisation in PS

in experimental state available since SHERPA-2.2.1
(full in SHERPA-2.3.0)

• PS variation is costly due to recalculation of all acceptance and
rejection probabilities, cap at nPS = 2 emissions
beware resummation sensitive observables

• neither HEPMC-2.06 nor HEPMC-3 fully support this
(only one cross section object, etc.)

http://sherpa.hepforge.org
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Thank you for your attention!
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Fixed-order variations
• LO trivial

• NLO, work in CS subtraction, independent of loop generator

• book-keep 18 weight components (2 VI, 16 KP)
R and each DS transform same as B

〈O〉LO =

∫
dΦB B(ΦB) O(ΦB)
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Fixed-order variations
• LO trivial

• NLO, work in CS subtraction, independent of loop generator

• book-keep 18 weight components (2 VI, 16 KP)
R and each DS transform same as B

B(ΦB) = αn
s (µ2

R) fa(xa, µ
2
F ) fb(xb, µ

2
F ) B′(ΦB)

〈O〉NLO =

∫
dΦB

B(ΦB) + VI(ΦB) +

∫
dx ′a/b KP(ΦB , x

′
a/b)

 O(ΦB)

+

∫
dΦR

R(ΦR)O(ΦR)−
∑
j

DS,j(ΦB,j · Φj
1)O(ΦB,j)


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Fixed-order variations
• LO trivial

• NLO, work in CS subtraction, independent of loop generator

• book-keep 18 weight components (2 VI, 16 KP)
R and each DS transform same as B

B(ΦB) = αn
s (µ2

R) fa(xa, µ
2
F ) fb(xb, µ

2
F ) B′(ΦB)

VI(ΦB) = αn+1
s (µ2

R) fa(xa, µ
2
F ) fb(xb, µ

2
F )

[
VI′(ΦB) + c

′ (0)
R lR + 1

2 c
′ (1)
R l2R

]lR = log(µ2
R/µ̃

2
R,ref)

Marek Schönherr Parton shower uncertainties 15/14



Reweighting Parton shower in single mutliplicity Parton showers in multijet merging Timings Conclusions

Fixed-order variations
• LO trivial
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[
VI′(ΦB) + c
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R lR + 1
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′ (1)
R l2R

]lR = log(µ2
R/µ̃

2
R,ref)

KP(ΦB , x
′
a/b)=αn+1

s (µ2
R)

[(
f qa c

′ (0)
F ,a + f qa (x ′a) c

′ (1)
F ,a + f ga c

′ (2)
F ,a + f ga (x ′a) c

′ (3)
F ,a

)
fb(xb, µ

2
F )

+fa(xa, µ
2
F )
(
f qb c

′ (0)
F ,b + f qb (x ′b) c

′ (1)
F ,b + f gb c

′ (2)
F ,b + f gb (x ′b) c

′ (3)
F ,b

)]
c
′ (i)
F ,a/b = c̃

(i)
F ,a/b + c̄

(i)
F ,a/b lF lF = log(µ2

F/µ̃
2
F ,ref)

same as used in SHERPA NTuples
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Qcut dependence of TeV-scale observables
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