

AUTOMATED NLO QCD+EW CORRECTIONS

"OPEN" ISSUES

VALENTIN HIRSCHI, IN COLLABORATION WITH

R.FREDERIX, S. FRIXIONE, D.PAGANI, H-S.SHAO, M. ZARO

LES HOUCHES

9TH JUNE 2017

OUTLINE

- Quick overview of NLO QCD+EW effort in MG5_aMC
- Skeleton of mixed corrections
- Snapshot of results for dijet

(cherry-picked) issues in EW+QCD

- Photon definition for arbitrary processes and corrections.
- Application of the **complex mass scheme**:
 - Implication of setting $|\alpha|$
 - How to handle unstable particles in the final states

MIXED NLO QCD+EW WITH MG5_AMC

See also recent progress made within the SHERPA+RECOLA framework arXiv:1704.05783, [B. Biedermann, S.Bräuer, A. Denner, M. Pellen, S. Schumann, J. M. Thompson]

UV-RENORMALIZATION AND PHOTON-INDUCED IR-DIVERGENCIES

- Work with massless leptons ($\alpha(M_Z)$ or G_μ scheme)
- In mixed EW renormalization schemes, for an **n**-body process with *l*-photons in the final states, one typically has: $\alpha(0)^l \alpha(M_Z)^{(n-l)}$ We want to avoid this and work within one scheme throughout.
- Always allow photon splitting, and explicitly cancel the corresponding collinear singularity.
- Use the complex mass scheme whenever a contribution features a resonance (otherwise widths set to 0 is acceptable).

The ttH case: S.Frixione, V.Hirschi, D. Pagani, H.-S. Shao, M. Zaro [arXiv:1504.03446]

LO

Valentin Hirschi, ETHZ

Mixed NLO QCD-EW

Les Houches

The ttH case: S.Frixione, V.Hirschi, D. Pagani, H.-S. Shao, M. Zaro [arXiv:1504.03446]

09.06.2017

The ttH case: S.Frixione, V.Hirschi, D. Pagani, H.-S. Shao, M. Zaro [arXiv:1504.03446]

Notation for an observable $\boldsymbol{\Sigma}$

$$\Sigma_{jj}^{(\text{LO})}(\alpha_s, \alpha) = \alpha_s^2 \Sigma_{2,0} + \alpha_s \alpha \Sigma_{2,1} + \alpha^2 \Sigma_{2,2}$$

$$\equiv \Sigma_{\text{LO},1} + \Sigma_{\text{LO},2} + \Sigma_{\text{LO},3}$$

$$\Sigma_{jj}^{(\text{NLO})}(\alpha_s, \alpha) = \alpha_s^3 \Sigma_{3,0} + \alpha_s^2 \alpha \Sigma_{3,1} + \alpha_s \alpha^2 \Sigma_{3,2} + \alpha^3 \Sigma_{3,3}$$

$$\equiv \Sigma_{\text{NLO},1} + \Sigma_{\text{NLO},2} + \Sigma_{\text{NLO},3} + \Sigma_{\text{NLO},4}$$

Usually, $\Sigma_{NLO,1}$ =NLO QCD, $\Sigma_{NLO,2}$ =NLO EW (weak+QED)

AUTOMATED NLO EW+QCD COMPUTATIONS

The ttH case: S.Frixione, V.Hirschi, D. Pagani, H.-S. Shao, M. Zaro [arXiv:1504.03446]

Valentin Hirschi, ETHZ

COMPLETE DIJET QCD+EW NLO CORRECTIONS

R. Frederix, S. Frixione, V. H., D. Pagani, H-S.Shao, M.Zaro [arXiv:1612.06548]

- All $\mathcal{O}(\alpha_s^m, \alpha^n), m+n=2,3$ contributions to dijet. Use G_{μ} scheme
- Use democratic jets and proposed a novel definition of (anti-)tagged photons
- Necessitated large computing resources, 219 subprocesses
- This process involves the whole particle spectrum of the SM.Yes, even the Higgs!

Valentin Hirschi, ETHZ

SINGLE-JET INCLUSIVE

- **EWC** (LO₂) is important in the tail
- Orders hierarchy respected
- In the tail, photon PDF is important
- Photon jet is very rare in general

DIJET-OBSERVABLES

• Fixed-order dijet cross section: a pathological behaviour

$$\sigma(\Delta) = \sigma\left(p_T^{(j_1)} \ge 60 \text{ GeV} + \Delta, p_T^{(j_2)} \ge 60 \text{ GeV}\right)$$

DIJET-OBSERVABLES

- NLO₁(=NLO QCD) is dominant in NLO
- NLO₁ changes sign at $M_{12} \sim 1 \text{ TeV}$
- NLO₂ (=NLO EW) reduces XS
- Scale uncer. is dominant uncer.
- Subleading contri. are extremely small

NEED FOR DEMOCRATIC JETS

[SLIDES ONWARDS FROM S.FRIXIONE]

Need to compute "QED corrections": then, include photon emission

But: soft photons induce singularities; one must treat them inclusively

Solution: sum over all configurations

However: (QCD) IR safety demands $E_{gluon} \rightarrow 0$ to be a smooth limit. This implies a $q\gamma$ final state must exist at the Born level. That's OK: treat q's, g's and γ 's democratically

ISSUES WITH DEMOCRATIC JETS

But experimentalists typically do not consider photon-jets as jets.

Solution: cluster democratically, but discard jets where $E_{\gamma} > z_{cut}E_{jet}$

However: E_{γ} is not a well-defined quantity in pQED $(\gamma \rightarrow q\overline{q})$

Still, it is much cleaner to devise a solution which is universally valid

INTRODUCING FRAGMENTATION FUNCTIONS

Our proposal:

A photon is taggable (i.e. can be subject to physical cuts) only if it emerges from a fragmentation process

Thus:

- A fragmentation function (FF) $D_{\gamma}^{(a)}$ must be introduced for each possible $a \to \gamma$ "hadronisation", with a any "parton"
- ► Key: this includes $D_{\gamma}^{(\gamma)}$ for $\gamma \to \gamma$ (turns a short-distance photon into a taggable photon)

▶ Note: $D_{\gamma}^{(q)}$ is necessary already at NLO EW when applying an E_{γ} cut

INTRODUCING FRAGMENTATION FUNCTIONS

From the purely perturbative FF evolution:

$$D_{\gamma}^{(\gamma)}(z,\mu) = \frac{\alpha(0)}{\alpha(\mu)}\delta(1-z) + \cdots$$

which allows one to recover immediately all known pQCD results

Problem: even with FFs, one cannot introduce wee-photon jets: FFs are not well defined for $z \to 0$

Solution: define cross sections for hard-photon jets, and subtract them from the democratic-jet cross section

$$d\sigma_{X;nj}^{(\text{antitag})} = d\sigma_{X;nj}^{(\text{dem})} - \sum_{k=1}^{n} d\sigma_{X+k\gamma;nj}$$

This eliminates jet \equiv photon contributions (and others)

Valentin Hirschi, ETHZ

PHOTON-JET CONCLUSIONS

- One can work in MS-like schemes, regardless of the nature of the final state
- Treat all light particles democratically, and insert FFs if an observable object must be searched for
- In a parton-level generator, fragmented and un-fragmented cross sections might be integrated simultaneously
- Collinear counterterms associated with FFs solve the IR problem
- Note: what's above applies to light leptons as well

PRACTICAL SOLUTION IN THE CASE OF DIJET [SLIDE FROM H-S.SHAO]

- Define photon-jet XSs only where the introduction of FF is **not needed** (no $\gamma
 ightarrow q ar q$)
- Asses the numerical importance of photon-jet contributions Frixione, '98
- Photon-isolation in this case follows Frixione-type criterion

- Algorithm:
 - find jets democratically
 - find isolated photons via Frixione-type criterion
 - photon jet candidate: a photon belongs to a jet and carries more than 90% p_{T}
 - photon jet: exactly one (two) isolated photon(s) in $\mathcal{O}(\alpha_s \alpha + \alpha_s^2 \alpha) (\mathcal{O}(\alpha^2 + \alpha_s \alpha^2))$
 - For single inclusive observables, each photon jet gives an entry
 - For dijet correlations, each pair of jets with at least one photon jet gives an entry

Mixed NLO QCD-EW

Les Houches

COMPLEX MASS SCHEME ISSUES

- Is there anyway to salvage the CMS with unstable final states? Relevant case: $p p > t t \sim (+jets)$
- $p p > t t \sim :$ Can set all widths to zero, so OK.
- $p p > t t \sim j$: Must retain the weak bosons width. Is **WT=0** ok?

Probably not! Because the following bubble has an imaginary residue of UV pole that remains uncancelled:

Any easy solution within the CMS? Or is one forced to always consider fully decayed particles?

Notice that the top width offshell effect $(\mathcal{O}(\Gamma_t/m_t))$ are anyway of the same order.

How to handle the complex phase of α ?

• In the G_{μ} -scheme for example, **\alpha** is defined as:

$$\alpha^{(CMS,G_{\mu})} = \frac{\sqrt{2}G_f}{\pi} \frac{M_W^{(CMS)2} - M_W^{(CMS)4}}{M_Z^{(CMS)2}} \longrightarrow \text{Should be complex!}$$

• In practice the complex phase is irrelevant because the matrix elements factorize $|\alpha|$. However, in subleading blobs, one can have:

Valentin Hirschi, ETHZ

How to handle the complex phase of $\pmb{\alpha}\,?$

- So we must set $\alpha \rightarrow |\alpha|$ to setup IR factorization and KLN cancel.
 - \rightarrow This induces **gauge violations** whenever sensitive to complex phase of α (?)
 - → And correspondingly, a potential **dependance** on how one writes EW couplings.
- This typically does not affect leading NLO EW corrections, but what is the best course of actions for subleading NLO ones?
- It is always possible to assign a phase to G_{μ} so as to make α real (this is what is effectively don in the $\alpha(M_Z)$ scheme) but both cannot be real at the same time.

MIC DROP

Valentin Hirschi, ETHZ

Mixed NLO QCD-EW

Les Houches

09.06.2017