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‣ Skeleton of mixed corrections 
‣ Quick overview of NLO QCD+EW effort in MG5_aMC

‣ Photon definition for arbitrary processes and corrections.

(cherry-picked) issues in EW+QCD

‣ Application of the complex mass scheme:

Outline

‣ Snapshot of results for dijet

‣ Implication of setting |𝛼|
‣ How to handle unstable particles in the final states
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Mixed NLO QCD+EW 
with

MG5_aMC

arXiv:1704.05783, [B. Biedermann, S.Bräuer, A. Denner, M. Pellen, S. Schumann, J. M. Thompson]

See also recent progress made within the SHERPA+RECOLA framework )(
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UV-Renormalization and
Photon-induced IR-divergencies

‣ Work with massless leptons (          or      scheme)

↵(0)l↵(MZ)
(n�l)

‣ In mixed EW renormalization schemes, for an n-body process 
with l-photons in the final states, one typically has:
We want to avoid this and work within one scheme throughout.

‣ Use the complex mass scheme whenever a contribution 
features a resonance (otherwise widths set to 0 is acceptable).

‣  Always allow photon splitting, and explicitly cancel the 
corresponding collinear singularity. 
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3 αsα
3 α4

α2αsαs
2α α3

LO

Process O(A) O(Σ)

gg → tt̄H α1
sα

1/2 α2
sα

1

qq̄ → tt̄H, q ̸= b α1
sα

1/2, α3/2 α2
sα

1, α3

qq̄ → tt̄H, q = b α1
sα

1/2, α3/2 α2
sα

1, α1
sα

2, α3

Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α ≪ αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the

– 4 –
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Structure of NLO EW-QCD corrections
The ttH case:  S.Frixione, V.Hirschi, D. Pagani, H.-S. Shao, M. Zaro [arXiv:1504.03446]
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Born B0 = O(α1
sα

1/2) B1 = O(α3/2)

QCD
Virtual VQCD,0 = O(α2

sα
1/2) VQCD,1 = O(α1

sα
3/2)

Real RQCD,0 = O(α3/2
s α1/2) RQCD,1 = O(α1/2

s α3/2)

EW
Virtual VEW,0 = O(α1

sα
3/2) VEW,1 = O(α5/2)

Real REW,0 = O(α1
sα

1) REW,1 = O(α2)

Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with
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of the coupling constants, α ≪ αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)
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3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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Photons lead to
new IR singularities

Structure of NLO EW-QCD corrections
The ttH case:  S.Frixione, V.Hirschi, D. Pagani, H.-S. Shao, M. Zaro [arXiv:1504.03446]

http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1504.03446
http://arxiv.org/abs/arXiv:1504.03446
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Structure of NLO EW-QCD corrections

Notation for an observable Σ
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Automated NLO EW+QCD computations

LO QCD                    LO EW                    

NLO QCD                    
αs
2α2ααs

3 αsα
3 α4

α2αsαs
2α α3

NLO EW                    

MG5_aMC> define p = p b b~ a
MG5_aMC> generate p p > t t~ h [QCD QED]
MG5_aMC> output ttbarh_QCD_QED
MG5_aMC> launch 

Next step: compute all blobs

The ttH case:  S.Frixione, V.Hirschi, D. Pagani, H.-S. Shao, M. Zaro [arXiv:1504.03446]

http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1504.03446
http://arxiv.org/abs/arXiv:1504.03446
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COMPLETE DIJET QCD+EW NLO corrections
R. Frederix, S. Frixione, V. H., D. Pagani, H-S.Shao, M.Zaro [arXiv:1612.06548]

Gµ

• All O(↵m
s ,↵n),m+ n = 2, 3

contributions to dijet. Use      -scheme 

• Use democratic jets and proposed a
   novel definition of (anti-)tagged photons

• Necessitated large computing 
   resources, 219 subprocesses

• This process involves the whole particle
   spectrum of the SM. Yes, even the Higgs!

http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
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Single-jet inclusive

jets: kT with D=0.7

|yj | < 2.8

|yj | < 2.8

d�(antitag)
X;j /d�(dem)

X;j

• EWC (LO2) is important in the tail

• In the tail, photon PDF is important

• Orders hierarchy  respected

• Photon jet is very rare in general
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dijet-observables

• Fixed-order dijet cross section: a pathological behaviour
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dijet-observables
jets: kT with D=0.7

dashed: negative

• NLO1(=NLO QCD) is dominant in NLO

• NLO1 changes sign at M12 ~ 1 TeV

• NLO2 (=NLO EW) reduces XS

• Subleading contri. are extremely small 

• Scale uncer. is dominant uncer. 
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Need for democratic jets
[Slides onwards from S.Frixione]
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Issues with democratic jets

But experimentalists typically do not consider photon-jets as jets.

q

γ
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Introducing Fragmentation Functions
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Introducing Fragmentation Functions
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Photon-Jet conclusions



� ! qq̄
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Practical solution in the case of dijet
[Slide from H-S.Shao]

• Define photon-jet XSs only where the introduction of FF is not needed (no             )
• Asses the numerical importance of photon-jet contributions
• Photon-isolation in this case follows Frixione-type criterion

Frixione, ’98

1� 2�• Algorithm:
• find jets democratically
• find isolated photons via Frixione-type criterion
• photon jet candidate: a photon belongs to a jet and carries more than 90% pT

• photon jet: exactly one (two) isolated photon(s) in                            (                         ) O(↵s↵+ ↵2
s↵) O(↵2 + ↵s↵

2)
• For single inclusive observables, each photon jet gives an entry
• For dijet correlations, each pair of jets with at least one photon jet gives an entry
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Complex mass scheme issues

‣ Is there anyway to salvage the CMS with unstable final states?
Relevant case:  p p > t t~ (+jets)
p p > t t~ :  Can set all widths to zero, so OK.
p p > t t~ j :  Must retain the weak bosons width.  Is WT=0 ok?

Probably not! Because the following bubble has an imaginary residue of 
UV pole that remains uncancelled:

O(�t/mt)

Any easy solution within the CMS? Or is one forced to always consider fully decayed 
particles?
Notice that the top width offshell effect (           ) are anyway of the same order.

Im( B(m(OS)
t , 0,m(CMS)

W ) ) ⇠ 1

✏UV

m(OS)
t mbare

t
�mt

+ + X=



|↵|Re(↵)
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How to handle the complex phase of 𝝰 ?
Gµ‣ In the      -scheme for example, α is defined as:

 Should be complex!

‣ In practice the complex phase is irrelevant because the matrix 
elements factorize |α|. However, in subleading blobs, one can have:

X ~

|↵|2X ~

Reals:

Virtuals: Re(↵)2X ~

≠

↵(CMS,Gµ) =

p
2Gf

⇡

M (CMS)2
W �M (CMS)4

W

M (CMS)2
Z
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How to handle the complex phase of 𝝰 ?

‣ So we must set α→|α| to setup IR factorization and KLN cancel.
→ This induces gauge violations whenever sensitive to complex phase of α (?)
→ And correspondingly, a potential dependance on how one writes EW couplings.

‣ This typically does not affect leading NLO EW corrections, but 
what is the best course of actions for subleading NLO ones?

‣ It is always possible to assign a phase to      so as to make α
           real (this is what is effectively don in the         scheme)

Gµ
↵(MZ)

but both cannot be real at the same time.
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Mic drop


