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The constant need for higher 
order radiative corrections

• The LHC is a hadronic collider operating at high energies 
• higher multiplicities 
• proton structure 
• very large soft and collinear corrections 
• logarithms of ratios of very different scales 

• Rule of thumb: 
• LO:  order of magnitude estimate 
• NLO: first reliable estimate of the central value 
• NNLO: first reliable estimate of the uncertainty 

• The Loop-Tree Duality promises to deal with virtual and 
real corrections on equal footing. In this talk we will see 
how the method copes with the virtual corrections



A generic one-loop integral

2 Notation

The FTT and the duality relation can be illustrated with no loss of generality by considering
their application to the basic ingredient of any one-loop Feynman diagrams, namely a
generic one-loop scalar integral L(N) with N (N ≥ 2) external legs.
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Figure 1: Momentum configuration of the one-loop N-point scalar integral.

The momenta of the external legs are denoted by pµ1 , p
µ
2 , . . . , p

µ
N and are clockwise or-

dered (Fig. 1). All are taken as outgoing. To simplify the notation and the presentation,
we also limit ourselves in the beginning to considering massless internal lines only. Thus,
the one-loop integral L(N) can in general be expressed as:

L(N)(p1, p2, . . . , pN) = −i
∫

ddq

(2π)d

N∏

i=1

1

q2i + i0
, (1)

where qµ is the loop momentum (which flows anti-clockwise). The momenta of the internal
lines are denoted by qµi ; they are given by

qi = q +
i∑

k=1

pk , (2)

and momentum conservation results in the constraint

N∑

i=1

pi = 0 . (3)

The value of the label i of the external momenta is defined modulo N , i.e. pN+i ≡ pi.

The number of space-time dimensions is denoted by d (the convention for the Lorentz-
indices adopted here is µ = 0, 1, . . . , d− 1) with metric tensor gµν = diag(+1,−1, . . . ,−1).
The space-time coordinates of any momentum kµ are denoted as kµ = (k0,k), where k0 is
the energy (time component) of kµ. It is also convenient to introduce light-cone coordinates
kµ = (k+,k⊥, k−), where k± = (k0 ± kd−1)/

√
2. Throughout the paper we consider loop

integrals and phase-space integrals. If the integrals are ultraviolet or infrared divergent, we
always assume that they are regularized by using analytic continuation in the number of
space-time dimensions (dimensional regularization). Therefore, d is not fixed and does not
necessarily have integer value.
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Figure 2: Location of the particle poles of the Feynman (left) and advanced (right) propa-
gators, G(q) and GA(q), in the complex plane of the variable q0 or q±.

3 The Feynman theorem

In this Section we briefly recall the FTT [1, 2].

To this end, we first introduce the advanced one-loop integral L(N)
A , which is obtained

from L(N) in Eq. (9) by replacing the Feynman propagators G(qi) with the corresponding
advanced propagators GA(qi):

L(N)
A (p1, p2, . . . , pN) =

∫

q

N∏

i=1

GA(qi) . (14)

Then, we note that
L(N)
A (p1, p2, . . . , pN) = 0 . (15)

The proof of Eq. (15) can be carried out in an elementary way by using the Cauchy
residue theorem and choosing a suitable integration path CL. We have

L(N)
A (p1, p2, . . . , pN) =

∫

q

∫
dq0

N∏

i=1

GA(qi)

=

∫

q

∫

CL

dq0

N∏

i=1

GA(qi) = − 2πi

∫

q

∑
Res{Im q0<0}

[
N∏

i=1

GA(qi)

]
= 0 . (16)

The loop integral is evaluated by integrating first over the energy component q0. Since
the integrand is convergent when q0 → ∞, the q0 integration can be performed along the
contour CL, which is closed at∞ in the lower half-plane of the complex variable q0 (Fig. 3–
left). The only singularities of the integrand with respect to the variable q0 are the poles of
the advanced propagators GA(qi), which are located in the upper half-plane. The integral
along CL is then equal to the sum of the residues at the poles in the lower half-plane and
therefore it vanishes.

The advanced and Feynman propagators are related by

GA(q) = G(q) + δ̃(q) , (17)
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The Feynman Tree Theorem

L(1)
A (p1, p2, . . . , pN ) =
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Figure 3: Location of poles and integration contour CL in the complex q0-plane for the
advanced (left) and Feynman (right) one-loop integrals, L(N)

A and L(N).

which can straightforwardly be obtained by using the elementary identity

1

x± i0
= PV

(
1

x

)
∓ iπ δ(x) , (18)

where PV denotes the principal-value prescription. Inserting Eq. (17) into the right-hand
side of Eq. (14) and collecting the contributions with an equal number of factors G(qi) and

δ̃(qj), we obtain a relation between L(N)
A and the one-loop integral L(N):

L(N)
A (p1, p2, . . . , pN) =

∫

q

N∏

i=1

[
G(qi) + δ̃(qi)

]

= L(N)(p1, p2, . . . , pN) + L(N)
1−cut(p1, p2, . . . , pN) + · · ·+ L(N)

N−cut(p1, p2, . . . , pN) . (19)

Here, the single-cut contribution is given by

L(N)
1−cut(p1, p2, . . . , pN) =

∫

q

N∑

i=1

δ̃(qi)
N∏

j=1
j ̸=i

G(qj) . (20)

In general, the m-cut terms L(N)
m−cut (m ≤ N) are the contributions with precisely m delta

functions δ̃(qi):

L(N)
m−cut(p1, p2, . . . , pN) =

∫

q

{
δ̃(q1) . . . δ̃(qm) G(qm+1) . . .G(qN ) + uneq. perms.

}
, (21)

where the sum in the curly bracket includes all the permutations of q1, . . . , qN that give
unequal terms in the integrand.

Recalling that L(N)
A vanishes, cf. Eq. (15), Eq. (19) results in:

L(N)(p1, p2, . . . , pN) = −
[
L(N)
1−cut(p1, p2, . . . , pN) + · · ·+ L(N)

N−cut(p1, p2, . . . , pN)
]

. (22)

This equation is the FTT in the specific case of the one-loop integral L(N). The FTT relates
the one-loop integral L(N) to the multiple-cut‡ integrals L(N)

m−cut. Each delta function δ̃(qi)

‡If the number of space-time dimensions is d, the right-hand side of Eq. (22) receives contributions only
from the terms with m ≤ d; the terms with larger values of m vanish, since the corresponding number of
delta functions in the integrand is larger than the number of integration variables.
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L(1)(p1, p2, . . . , pN ) =

Z

`

NY

i=1

GF (qi)

⌘ is a future-like vector such that ⌘µ = (⌘0, ⌘) ,with ⌘0 � 0, ⌘2 = ⌘µ⌘
µ � 0

Dual propagator, keeps proper track of the small imaginary 
parts. Notice that (qj-qi) does not depend on the loop 
momentum. Recall that e�(qi) ! e�(qi) = 2⇡ i ✓(qi,0) �(q

2
i �m2

i )



A graphical representation 
of the Loop-Tree Duality

i.e. a d-dimensional vector that can be either light-like (η2 = 0) or time-like (η2 > 0)
with positive definite energy η0. Note that the calculation of the residue at the pole of
the internal line with momentum qi changes the propagators of the other lines in the loop
integral. Although the propagator of the j-th internal line still has the customary form
1/q2j , its singularity at q2j = 0 is regularized by a different i0 prescription: the original
Feynman prescription q2j + i0 is modified in the new prescription q2j − i0 η(qj − qi), which
we name the ‘dual’ i0 prescription or, briefly, the η prescription. The dual i0 prescription
arises from the fact that the original Feynman propagator 1/(q2j + i0) is evaluated at
the complex value of the loop momentum q, which is determined by the location of the
pole at q2i + i0 = 0. The i0 dependence from the pole has to be combined with the i0
dependence in the Feynman propagator to obtain the total dependence as given by the
dual i0 prescription. The presence of the vector ηµ is a consequence of using the residue
theorem. To apply it to the calculation of the d dimensional loop integral, we have to
specify a system of coordinates (e.g. space-time or light-cone coordinates) and select one of
them to be integrated over at fixed values of the remaining d− 1 coordinates. Introducing
the auxiliary vector ηµ with space-time coordinates ηµ = (η0, 0⊥, ηd−1), the selected system
of coordinates can be denoted in a Lorentz-invariant form. Applying the residue theorem
in the complex plane of the variable q0 at fixed (and real) values of the coordinates q⊥ and
q′d−1 = qd−1 − q0ηd−1/η0 (to be precise, in Eq. (27) we actually used ηµ = (1, 0)), we obtain
the result in Eq. (30).

The η dependence of the ensuing i0 prescription is thus a consequence of the fact that the
residues at each of the poles are not Lorentz-invariant quantities. The Lorentz-invariance
of the loop integral is recovered only after summing over all the residues.

p1

p2

pN

p3

ℓ = −
N∑

i=1

pi−1 pi

pi+1

qi−1

δ̃(qi−1)

1
q2i − i0 ηpi

Figure 5: The duality relation for the one-loop N-point scalar integral. Graphical represen-
tation as a sum of N basic dual integrals.

Inserting the results of Eq. (28)–(30) in Eq. (27) we directly obtain the duality relation
between one-loop integrals and phase-space integrals:

L(N)(p1, p2, . . . , pN) = − L̃(N)(p1, p2, . . . , pN) , (32)

where the explicit expression of the phase-space integral L̃(N) is (Fig. 5)

L̃(N)(p1, p2, . . . , pN) =

∫

q

N∑

i=1

δ̃(qi)
N∏

j=1
j ̸=i

1

q2j − i0 η(qj − qi)
, (33)
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En explicit result
L(1)(p1, p2, p3) =

Z

`
GF (q1)GF (q2)GF (q3)

q1 = `+ p1, q2 = `+ p1 + p2 = `, q3 = `

GF (q1) =
1

q21 �m2
1 + i0

, GF (q2) =
1

q22 �m2
2 + i0

, GF (q3) =
1

q23 �m2
3 + i0

Let us apply the Loop-Tree Duality
L(1)

(p1, p2, p3) =

Z

`

e�(q1)GD(q1; q2)GD(q1; q3) first contribution

+

Z

`
GD(q2; q1)e�(q2)GD(q2; q3) second contribution

+

Z

`
GD(q3; q1)GD(q3; q2)e�(q3) third contribution

(I1)

(I2)

(I3)



En explicit result
L(1)

(p1, p2, p3) =

Z

`

e�(q1)GD(q1; q2)GD(q1; q3) first contribution

+

Z

`
GD(q2; q1)e�(q2)GD(q2; q3) second contribution

+

Z

`
GD(q3; q1)GD(q3; q2)e�(q3) third contribution
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e�(q1) =
�(`0 � (�p1,0 +

p
(`+ p1)2 +m2

1))

2
p

(`+ p1)2 +m2
1)

,

e�(q2) =
�(`0 � (�p1,0 � p2,0 +

p
(`+ p1 + p2)2 +m2

2))

2
p

(`+ p1 + p2)2 +m2
2)

,

e�(q3) =
�(`0 �

q
`2 +m2

3)

2
q

`2 +m2
3

I3 = �
Z

`

1

2p1,0

q
`2 +m2

3 + 2` · p1 �m2
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Implementation
• In C++ (double and extended precision) 
• Uses the Cuba library for numerical integration (T. Hahn) 
• In particular, Cuhre (G. Berntsen, T. O. Espelid, A. Genz) and  
         Vegas (G. P. Lepage) 
•      Input:    - number of legs 
                      - external momenta 
                      - internal masses 
•      The user is free to choose between Cuhre and Vegas and also to change 
         the parameters of the contour deformation 
•      MATHEMATICA was used extensively for cross-checking and during the  
        development 
•      Two other programs were heavily used 
         Looptools (T. Hahn, M. Perez-Victoria) and 
         SecDec v3 (S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke) 
         to get reference values and generally for cross-checks 
•       Special thanks to S. Borowka and to G. Heinrich for advice on running
         SecDec for some special cases



Review of previous results
• These were obtained on a Desktop machine with an 

Intel i7 (3.4 GHz) processor, # cores = 4 and # threads 
= 8 unless otherwise stated

• Disclaimer: The SecDec run times in the following are 
only indicative, no optimisations were used and the 
important for us was the SecDec result as a reference 
value. Wherever run times of SecDec and the Loop-
Tree Duality are displayed it is only to give a feeling of 
the increasing complexity of the integrals calculated 
and not a comparison of the two programs!



Scalar triangles

<1 to 15 seconds for 4 digits accuracy



Scalar triangles
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Scalar boxes

<1 to 20 seconds for 4 digits accuracy



Scalar boxes
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Scalar pentagons

<1 to 30 seconds for 
 4 digits accuracy



Tensor diagrams

• In general, tensor one-loop diagrams do not 
present a priori an extra difficulty for the Loop-Tree 
Duality. The run times seem to increase only a bit in 
order to get the same accuracy as in the scalar 
diagrams case.



Tensor pentagons



Tensor hexagons



 2γ → (N −2)γ
G.Mahlon, Phys.Rev. D49 (1994) 2197-2210 
Z. Nagy, D. E. Soper, Phys.Rev. D74 (2006) 093006
T. Binoth, T. Gehrmann, G.Heinrich, P. Mastrolia, Phys.Lett. B649 (2007) 422-426
G. Ossola, C. G. Papadopoulos, R. Pittau, JHEP  0707 (2007) 085  
C. Bernicot, J.-Ph. Guillet,  JHEP  01, 059 (2008) 
Wei Cong, Z. Nagy, D. E. Soper, Phys.Rev. D79 (2009) 033005

e+  e-  → 5, 6, 7 jets
S. Becker, D. Goetz, C. Reuschle, C. Schwan, and S. Weinzierl, Phys. Rev. Lett. 108

High Energy QCD: “many”-gluons amplitudes at NLO
•  Phenomenology of multi-jet production 
•  Formal aspects of BFKL-theoretical issues that require 

 the introduction of a gluon mass. Also, off-shell gluons!



Beyond the hexagon

6

9

7

8

10



Heptagons

TENSOR HEPTAGON 
numerator = l.p2 x l.p4 
p1 = (-2.500000,  0,         0,        -2.500000)       
p2 = (-2.500000,  0,         0,         2.500000) 
p3 = (-0.431770,  0.076067, -0.188168,  0.381094) 
p4 = (-1.400590,  0.415630,  1.316019, -0.238745)     
p5 = (-0.637612,  0.452245,  0.415891, -0.170465)     
p6 = (-2.070650, -1.160727, -1.663772,  0.414928) 
p7 = - p1 - p2 - p3 - p4 - p5 - p6 

m1 = m1 = m3 = m4 = m5 = m6 = m7 = 4.506760 

LTD: REAL = -2.596352 10-8 +/- 2.037989 10-12 
LTD: IMAG = -1.141076 10-7 +/- 7.837520 10-12

SCALAR HEPTAGON 
numerator = 1 
p1 = (-2.500000,  0,         0,        -2.500000)       
p2 = (-2.500000,  0,         0,         2.500000) 
p3 = (-0.431770,  0.076067, -0.188168,  0.381094) 
p4 = (-1.400590,  0.415630,  1.316019, -0.238745)     
p5 = (-0.637612,  0.452245,  0.415891, -0.170465)     
p6 = (-2.070650, -1.160727, -1.663772,  0.414928) 
p7 = - p1 - p2 - p3 - p4 - p5 - p6 

m1 = m1 = m3 = m4 = m5 = m6 = m7 = 4.506760 

LTD: REAL = -3.452516 10-10 +/- 2.037989 10-15 
LTD: IMAG = -1.501949 10-9  +/- 7.837520 10-15Momenta configurations 

were produced with 
RAMBO

R. Kleiss, W. J. Stirling  S. D. Ellis



Heptagons
SCALAR HEPTAGON - ALL MASSES DIFFERENT 

numerator = 1 

p1 = (-2.500000,  0,         0,        -2.500000)       
p2 = (-2.500000,  0,         0,         2.500000) 
p3 = (-0.431770,  0.076067, -0.188168,  0.381094) 
p4 = (-1.400590,  0.415630,  1.316019, -0.238745)     
p5 = (-0.637612,  0.452245,  0.415891, -0.170465)     
p6 = (-2.070650, -1.160727, -1.663772,  0.414928) 
p7 = - p1 - p2 - p3 - p4 - p5 - p6 

m1 = 4.506760 
m1 = 2.814908 
m3 = 1.427626 
m4 = 7.621541 
m5 = 5.269166 
m6 = 3.521039 
m7 = 5.888145 

LTD: REAL = -3.658536 10-9 +/- 7.852153 10-13 
LTD: IMAG = -5.843570 10-9 +/- 7.851541 10-13



Octagons

TENSOR OCTAGON 
numerator = l.p2 x l.p4 
p1 = (-2.500000,  0,          0,         -2.500000)       
p2 = (-2.500000,  0,          0,          2.500000) 
p3 = (-0.427656,  0.041109,  -0.180818,   0.385362) 
p4 = (-0.907144,  0.289299,   0.859318,   2.805929)     
p5 = (-0.414246,  0.329547,   0.249476,  -0.027570)     
p6 = (-1.907351, -0.950926,  -1.460214,   0.775566) 
p7 = (-0.271157,  0.155665,   0.039639,  -0.218456) 
p8 = - p1 - p2 - p3 - p4 - p5 - p6 - p7 

m1 = m2 = m3 = m4 = m5 = m6 = m7 = m8 = 4.506760 

LTD: REAL = -3.774487 10-10 +/- 3.396473 10-14 
LTD: IMAG =  2.827604 10-9  +/- 3.393935 10-14

SCALAR OCTAGON 
numerator = 1 
p1 = (-2.500000,  0,          0,         -2.500000)       
p2 = (-2.500000,  0,          0,          2.500000) 
p3 = (-0.427656,  0.041109,  -0.180818,   0.385362) 
p4 = (-0.907144,  0.289299,   0.859318,   2.805929)     
p5 = (-0.414246,  0.329547,   0.249476,  -0.027570)     
p6 = (-1.907351, -0.950926,  -1.460214,   0.775566) 
p7 = (-0.271157,  0.155665,   0.039639,  -0.218456) 
p8 = - p1 - p2 - p3 - p4 - p5 - p6 - p7 

m1 = m2 = m3 = m4 = m5 = m6 = m7 = m8 = 4.506760 

LTD: REAL = -2.079457 10-11 +/- 6.283601 10-15 
LTD: IMAG =  9.439531 10-11  +/- 6.273917 10-15



Octagons
SCALAR OCTAGON - ALL MASSES DIFFERENT 

numerator = 1 
p1 = (-2.500000,  0,          0,         -2.500000)       
p2 = (-2.500000,  0,          0,          2.500000) 
p3 = (-0.427656,  0.041109,  -0.180818,   0.385362) 
p4 = (-0.907144,  0.289299,   0.859318,   2.805929)     
p5 = (-0.414246,  0.329547,   0.249476,  -0.027570)     
p6 = (-1.907351, -0.950926,  -1.460214,   0.775566) 
p7 = (-0.271157,  0.155665,   0.039639,  -0.218456) 
p8 = - p1 - p2 - p3 - p4 - p5 - p6 - p7 

m1 = 4.506760 
m2 = 2.814908 
m3 = 1.427626 
m4 = 7.621541 
m5 = 5.269166 
m6 = 3.521039 
m7 = 5.888145 
m8 = 4.422515 

LTD: REAL = 6.826303 10-10  +/- 3.731196 10-13 
LTD: IMAG = 9.173787 10-10  +/- 3.701180 10-13



Conclusions & Outlook
• The Loop-Tree Duality has many appealing theoretical 

properties 

• Here we have updated numerical results from an 
implementation of the method suitable for computing 
one-loop Feynman diagrams 

• The method seems to excel in cases where we have 
many legs and many different scales as the increase of 
the run time is rather mild 

• Near future: 6- and 8-photon amplitudes


