

Instituto de

UAM-CSIC

The Loop-Tree Duality: Gearing up

Grigorios Chachamis, IFT UAM-CSIC Madrid

In collaboration with G. Rodrigo

Les Houches 2017, 5-14 June, Les Houches, France

Outline

- Introduction to the method
- Implementation and previous results
- New results and ongoing projects
- Summary and Outlook

The constant need for higher order radiative corrections

- The LHC is a hadronic collider operating at high energies
 - higher multiplicities
 - proton structure
 - very large soft and collinear corrections
 - logarithms of ratios of very different scales
- Rule of thumb:
 - LO: order of magnitude estimate
 - NLO: first reliable estimate of the central value
 - NNLO: first reliable estimate of the uncertainty
- The Loop-Tree Duality promises to deal with virtual and real corrections on equal footing. In this talk we will see how the method copes with the virtual corrections

A generic one-loop integral

Number of legs N, number of spacetime dimensions is D. Assume that it is UV and IR finite.

$$L^{(1)}(p_1, p_2, \dots, p_N) = -i \int \frac{d^d \ell}{(2\pi)^d} \prod_{i=1}^N \frac{1}{q_i^2 + i0}$$

 ℓ^{μ} is the loop momentum and $q_i = \ell + \sum_{k=1}^{n} p_k$ are the momenta of the propagators. $G_F(q) \equiv \frac{1}{q^2 + i0}$ is the Feynman propagator.

Introduce the shorthand notation -i

I

northand notation
$$-i\int rac{a}{(2\pi)^d}ullet ullet \equiv \int_\ellullet \$$
, then $^{(1)}(p_1,p_2,\ldots,p_N) = \int_\ell \prod_{i=1}^N G_F(q_i)$

 q_N

 p_N

 p_2

 q_2

 p_3

Feynman and advanced propagators are related:

 $G_A(q) = G_F(q) + \widetilde{\delta}(q)$ with $\widetilde{\delta}(\ell) \equiv 2\pi i \,\theta(\ell_0) \,\delta(\ell^2)$

This also holds when the propagators are

massive but now $\widetilde{\delta}(q_i) \to \widetilde{\delta}(q_i) = 2\pi i \, \theta(q_{i,0}) \, \delta(q_i^2 - m_i^2)$

Feynman and advanced propagators differ in the position of the poles in the complex plane

The Feynman Tree Theorem

The Loop-Tree Duality

$$L^{(1)}(p_1, p_2, \dots, p_N) = \int_{\ell} \prod_{i=1}^{N} G_F(q_i)$$

$$(^{(1)}(p_1, p_2, \dots, p_N) = -\sum_{i=1}^{N} \int_{\ell_1} \widetilde{\delta}(q_i) \prod_{\substack{j=1\\ j \neq i}}^{N} G_D(q_i; q_j) = \frac{1}{q_j^2 - m_j^2 - i0 \eta(q_j - q_i)}$$

 η is a future-like vector such that $\eta_{\mu} = (\eta_0, \eta)$, with $\eta_0 \ge 0$, $\eta^2 = \eta_{\mu} \eta^{\mu} \ge 0$

Dual propagator, keeps proper track of the small imaginary parts. Notice that (q_j-q_i) does not depend on the loop momentum. Recall that $\tilde{\delta}(q_i) \rightarrow \tilde{\delta}(q_i) = 2\pi i \,\theta(q_{i,0}) \,\delta(q_i^2 - m_i^2)$

A graphical representation of the Loop-Tree Duality

$$\begin{aligned} & En \ explicit \ result \\ L^{(1)}(p_1, p_2, p_3) = \int_{\ell} G_F(q_1) G_F(q_2) G_F(q_3) \\ G_F(q_1) = \frac{1}{q_1^2 - m_1^2 + i0}, \ G_F(q_2) = \frac{1}{q_2^2 - m_2^2 + i0}, \ G_F(q_3) = \frac{1}{q_3^2 - m_3^2 + i0} \\ q_1 = \ell + p_1, \ q_2 = \ell + p_1 + p_2 = \ell, \ q_3 = \ell \end{aligned}$$

Let us apply the Loop-Tree Duality

$$L^{(1)}(p_1, p_2, p_3) = \int_{\ell} \widetilde{\delta}(q_1) G_D(q_1; q_2) G_D(q_1; q_3) \quad \text{first contribution} \quad (\mathbf{I}_1) \\ + \int_{\ell} G_D(q_2; q_1) \widetilde{\delta}(q_2) G_D(q_2; q_3) \quad \text{second contribution} \quad (\mathbf{I}_2) \\ + \int_{\ell} G_D(q_3; q_1) G_D(q_3; q_2) \widetilde{\delta}(q_3) \quad \text{third contribution} \quad (\mathbf{I}_3)$$

$$\begin{split} & En \, explicit \, result \\ & L^{(1)}(p_1, p_2, p_3) = \int_{\ell} \widetilde{\delta}(q_1) G_D(q_1; q_2) G_D(q_1; q_3) & \text{first contribution} \quad (\mathbf{I}_1) \\ & + \int_{\ell} G_D(q_2; q_1) \widetilde{\delta}(q_2) G_D(q_2; q_3) & \text{second contribution} \quad (\mathbf{I}_2) \\ & + \int_{\ell} G_D(q_3; q_1) G_D(q_3; q_2) \widetilde{\delta}(q_3) & \text{third contribution} \quad (\mathbf{I}_3) \\ & \widetilde{\delta}(q_1) = \frac{\delta(\ell_0 - (-p_{1,0} + \sqrt{(\ell + \mathbf{p}_1)^2 + m_1^2}))}{2\sqrt{(\ell + \mathbf{p}_1)^2 + m_1^2}} \,, \\ & \widetilde{\delta}(q_2) = \frac{\delta(\ell_0 - (-p_{1,0} - p_{2,0} + \sqrt{(\ell + \mathbf{p}_1 + \mathbf{p}_2)^2 + m_2^2}))}{2\sqrt{(\ell + \mathbf{p}_1 + \mathbf{p}_2)^2 + m_2^2}} \,, \\ & \widetilde{\delta}(q_3) = \frac{\delta(\ell_0 - \sqrt{\ell^2 + m_3^2})}{2\sqrt{\ell^2 + m_3^2}} \end{split}$$

$$\begin{split} I_{3} &= -\int_{\ell} \frac{1}{2p_{1,0}\sqrt{\ell^{2} + m_{3}^{2}} + 2\ell \cdot \mathbf{p}_{1} - m_{1}^{2} + m_{3}^{2} + p_{1}^{2} - i0\eta k_{13}} \cdot \frac{1}{2\sqrt{\ell^{2} + m_{3}^{2}}} \cdot \\ & \frac{1}{2(p_{1,0} + p_{2,0})\sqrt{\ell^{2} + m_{3}^{2}} + 2\ell \cdot (\mathbf{p}_{1} + \mathbf{p}_{2}) + (p_{1} + p_{2})^{2} - m_{2}^{2} + m_{3}^{2} - i0\eta k_{23}} \end{split}$$

Contour deformation

Assume $f(\ell_x) = \frac{1}{\ell_x^2 - E^2 + i0}$ with poles $\ell_{x\pm} = \pm (E - i0)$

10 5 lm(lx') 0 -5 contour deformation Integration path before defo -10 poles -2 -1 -4 -3 0 1 2 3 4 Re(lx')

Implementation

- In C++ (double and extended precision)
- Uses the Cuba library for numerical integration (T. Hahn)
- In particular, Cuhre (G. Berntsen, T. O. Espelid, A. Genz) and Vegas (G. P. Lepage)
- Input: number of legs
 - external momenta
 - internal masses
- The user is free to choose between Cuhre and Vegas and also to change the parameters of the contour deformation
- MATHEMATICA was used extensively for cross-checking and during the development
- Two other programs were heavily used Looptools (T. Hahn, M. Perez-Victoria) and SecDec v3 (S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke) to get reference values and generally for cross-checks
- **Special thanks** to S. Borowka and to G. Heinrich for advice on running SecDec for some special cases

Review of previous results

- These were obtained on a Desktop machine with an Intel i7 (3.4 GHz) processor, # cores = 4 and # threads = 8 unless otherwise stated
- Disclaimer: The SecDec run times in the following are only indicative, no optimisations were used and the important for us was the SecDec result as a reference value. Wherever run times of SecDec and the Loop-Tree Duality are displayed it is only to give a feeling of the increasing complexity of the integrals calculated and not a comparison of the two programs!

Scalar triangles

	Real Part	Real Error	Imaginary Part	Imaginary Error
LoopTools P.3	5.37305E-4	0	-6.68103E-4	0
Loop–Tree Duality P.3	5.37307E-4	8.6E-9	-6.68103E-4	8.6E-9
LoopTools P.4	-5.61370E-7	0	-1.01665E-6	0
Loop–Tree Duality P.4	-5.61371E-7	7.2E-10	-1.01666E-6	7.2E-10

Point 3 $p_1 = \{10.51284, 6.89159, -7.40660, -2.85795\}$ $p_2 = \{6.45709, 2.46635, 5.84093, 1.22257\}$

 $m_1 = m_2 = m_3 = 0.52559$

Point 4 $p_1 = \{95.77004, 31.32025, -34.08106, -9.38565\}$ $p_2 = \{94.54738, -53.84229, 67.11107, 45.56763\}$ $m_1 = 83.02643, m_2 = 76.12873, m_3 = 55.00359$

<1 to 15 seconds for 4 digits accuracy

Scalar triangles

All internal masses equal The red curve is from running LoopTools

Scalar boxes

	Real Part	Real Error	Imaginary Part	Imaginary Error
LoopTools P.7	-2.38766E-10	0	-3.03080E-10	0
Loop–Tree Duality P.7	-2.38798E-10	8.2E-13	-3.03084E-10	8.2E-13
LoopTools P.8	-4.27118E-11	0	4.49304E-11	0
Loop–Tree Duality P.8	-4.27127E-11	5.3E-14	4.49301E-11	5.3E-14
LoopTools P.9	6.43041E-11	0	1.61607 E-10	0
Loop–Tree Duality P.9	6.43045E-11	8.4E-15	1.61607E-10	8.4E-15
LoopTools P.10	-4.34528E-11	0	3.99020E-11	0
Loop–Tree Duality P.10	-4.34526E-11	3.5E-14	3.99014E-11	3.5E-14

- **Point 7** $p_1 = \{62.80274, -49.71968, -5.53340, -79.44048\}$ $p_2 = \{48.59375, -1.65847, 34.91140, 71.89564\}$ $p_3 = \{76.75934, -19.14334, -17.10279, 30.22959\}$ $m_1 = m_2 = m_3 = m_4 = 9.82998$
- **Point 8** $p_1 = \{98.04093, 77.37405, 30.53434, -81.88155\}$ $p_2 = \{73.67657, -53.78754, 13.69987, 14.20439\}$ $p_3 = \{68.14197, -36.48119, 59.89499, -81.79030\}$ $m_1 = 81.44869, m_2 = 94.39003, m_3 = 57.53145, m_4 = 0.40190$

Point 9 $p_1 = \{90.15393, -60.44028, -18.19041, 42.34210\}$

- $p_2 = \{75.27949, 86.12082, 19.15087, -95.80345\}$
- $p_3 = \{14.34134, 2.00088, 87.56698, 39.80553\}$

 $m_1 = m_2 = 21.23407, m_3 = m_4 = 81.40164$

Point 10 $p_1 = \{56.88939, 87.04163, -34.62173, -42.86104\}$

- $p_2 = \{92.86718, -91.88334, 59.75945, 38.70047\}$
- $p_3 = \{55.98527, -35.20008, 9.02722, 82.97219\}$

 $m_1 = m_3 = 67.88777, m_2 = m_4 = 40.77317$

<1 to 20 seconds for 4 digits accuracy

Scalar boxes

All internal masses equal The red curve is from running LoopTools

Scalar pentagons

		Real Part	Real E	rror	Imaginary Part	Imaginary Error	
	LoopTools P.13	1.02350E-11	0		1.40382E-11	0	
	Loop–Tree Duality P.13	1.02353E-11	1.0E-1	6	1.40385E-11	1.0E-16	
	LoopTools P.14	7.46345E-15	0		-9.13484E-15	0	
	Loop–Tree Duality P.14	7.46309E-15	6.1E-1	8	-9.13444E-15	6.1E-18	
	LoopTools P.15	6.89836E-15	0		2.14893E-15	0	
	Loop–Tree Duality P.15	6.89848E-15	6.5E-1	8	2.14894 E- 15	6.5E-18	
Point	13 $p_1 = \{1.58374, 6.86200, -15, -15, -15, -15, -15, -15, -15, -15$	5.06805, -10.6357	4}	Point	t 15 $p_1 = \{-32.14401,$	-64.50445, 46.04455, -75	5.56462]
	$p_2 = \{7.54800, -3.36539, 34\}$	$1.57385, 27.52676\}$			$p_2 = \{-96.90340,$	-27.60002, -71.50486, 86	6.25541]
	$p_3 = \{43.36396, -49.27646, $	-25.35062, -17.6	68709}		$p_3 = \{-37.95135,$	46.18586, 25.67520, -71.3	$88501\}$
	$p_4 = \{22.58103, 38.31530, -$	14.67581, -3.082	09}		$p_4 = \{-87.67870,$	66.66463, -36.20151, -27	7.37362
$m_1 = m_2 = m_3 = m_4 = m_5 = 2.76340$,		$m_1 = m_2 = m_3 =$	$79.63229, m_4 = m_5 = 51.$.70237	
Point	14 $p_1 = \{-93.06712, -36.3799$ $p_2 = \{-46.33465, -11.9090$ $p_3 = \{8.41724, -83.92296, 50\}$	7, -27.71460, 38.4 9, 32.33395, 46.42 6.21715, 34.04937	42206} 742} '}	<	:1 to 30 se	econds for	
	$p_4 = \{-15.23696, 71.33931, $	48.68306, -53.676	870}		4 digits a	ICCUracy	
	$m_1 = 59.10425, m_2 = 60.25099, m_3 = 76.79109$						

 $m_4 = 65.27606, m_5 = 5.99925$

Tensor diagrams

 In general, tensor one-loop diagrams do not present a priori an extra difficulty for the Loop-Tree Duality. The run times seem to increase only a bit in order to get the same accuracy as in the scalar diagrams case.

Tensor pentagons

		Rank	Tensor Pentagon	Real Part	Imaginary Part	Time [s]
7	P16	2	LoopTools	-1.86472×10^{-8}		
			SecDec	$-1.86471(2) \times 10^{-8}$		45
			LTD	$-1.86462(26) \times 10^{-8}$		1
	P17	3	LoopTools	1.74828×10^{-3}		
			SecDec	$1.74828(17) \times 10^{-3}$		550
r			LTD	$1.74808(283) \times 10^{-3}$		1
,	P18	2	LoopTools	-1.68298×10^{-6}	$+i \ 1.98303 \times 10^{-6}$	
			SecDec	$-1.68307(56) \times 10^{-6}$	$+i \ 1.98279(90) \times 10^{-6}$	66
/			LTD	$-1.68298(74) \times 10^{-6}$	$+i \ 1.98299(74) \times 10^{-6}$	36
	P19	3	LoopTools	-8.34718×10^{-2}	$+i \ 1.10217 \times 10^{-2}$	
			SecDec	$-8.33284(829) \times 10^{-2}$	$+i \ 1.10232(107) \times 10^{-2}$	1501
			LTD	$-8.34829(757) \times 10^{-2}$	$+i \ 1.10119(757) \times 10^{-2}$	38
	$(\ell \cdot n)$	$(a) \times (b)$	$(\ell \cdot p_A)$			

 $\frac{(\ell \cdot p_3) \times (\ell \cdot p_4)}{(\ell \cdot p_3) \times (\ell \cdot p_4) \times (\ell \cdot p_5)}$

Tensor hexagons

	Rank	Tensor Hexagon	Real Part	Imaginary Part	Time[s]
P20	1	SecDec	$-1.21585(12) \times 10^{-15}$		36
		LTD	$-1.21552(354) \times 10^{-15}$		6
P21	3	SecDec	$4.46117(37) \times 10^{-9}$		5498
		LTD	$4.461369(3) \times 10^{-9}$		11
P22	1	SecDec	$1.01359(23) \times 10^{-15}$	$+i \ 2.68657(26) \times 10^{-15}$	33
		LTD	$1.01345(130) \times 10^{-15}$	$+i \ 2.68633(130) \times 10^{-15}$	72
P23	2	SecDec	$2.45315(24) \times 10^{-12}$	$-i \ 2.06087(20) \times 10^{-12}$	337
		LTD	$2.45273(727) \times 10^{-12}$	$-i \ 2.06202(727) \times 10^{-12}$	75
P24	3	SecDec	$-2.07531(19) \times 10^{-6}$	$+i \ 6.97158(56) \times 10^{-7}$	14280
		LTD	$-2.07526(8) \times 10^{-6}$	$+i \ 6.97192(8) \times 10^{-7}$	85

 $\overline{(\ell \cdot p_4)} \times (\ell \cdot p_5) \times (\ell \cdot p_6)$

 $\begin{aligned} \mathbf{P24} \quad p_1 &= (-70.26380, 96.72681, 21.66556, -37.40054) \\ p_2 &= (-13.45985, 2.12040, 3.20198, 91.44246) \\ p_3 &= (-62.59164, -29.93690, -22.16595, -58.38466) \\ p_4 &= (-67.60797, -83.23480, 18.49429, 8.94427) \\ p_5 &= (-34.70936, -62.59326, -60.71318, 2.77450) \\ m_1 &= 94.53242, m_2 &= 64.45092, m_3 &= 74.74299, \\ m_4 &= 10.63129, m_5 &= 31.77881, m_6 &= 23.93819 \end{aligned}$

$2\gamma \rightarrow (N - 2)\gamma$

G.Mahlon, Phys.Rev. D49 (1994) 2197-2210

Z. Nagy, D. E. Soper, Phys.Rev. D74 (2006) 093006

T. Binoth, T. Gehrmann, G.Heinrich, P. Mastrolia, Phys.Lett. B649 (2007) 422-426

G. Ossola, C. G. Papadopoulos, R. Pittau, JHEP 0707 (2007) 085

C. Bernicot, J.-Ph. Guillet, JHEP 01, 059 (2008)

Wei Cong, Z. Nagy, D. E. Soper, Phys.Rev. D79 (2009) 033005

$$e^+ e^- \rightarrow 5, 6, 7 \text{ jets}$$

S. Becker, D. Goetz, C. Reuschle, C. Schwan, and S. Weinzierl, Phys. Rev. Lett. 108

High Energy QCD: "many"-gluons amplitudes at NLO

- Phenomenology of multi-jet production
- Formal aspects of BFKL-theoretical issues that require the introduction of a gluon mass. Also, off-shell gluons!

Heptagons

SCALAR HEPTAGON			
$n_1 = (-2, 50000)$	0	0	-2500000)
$p_1 = (-2.500000)$	0.	0.	2,500000)
$p_3 = (-0.431770)$	0.076067.	-0.188168.	0.381094)
$p_4 = (-1.400590)$	0.415630,	1.316019,	-0.238745)
$p_5 = (-0.637612)$	0.452245,	0.415891,	-0.170465)
$p_6 = (-2.070650)$	-1.160727,	-1.663772,	0.414928)
$p_7 = -p_1 - p_2 - p_1$	0 ₃ – p ₄ – p ₅	5 – p 6	
$m_1 = m_1 = m_3 = m_4$	$= m_5 = m_6 =$	$m_7 = 4.5067$	/60
			15
LTD: REAL = -3.45	$52516 \ 10^{-10}$	+/- 2.03798	9 10-15
LTD: IMAG = -1.50	01949 10 ⁻⁹	+/- 7.83752	0 10 ⁻¹⁵

Momenta configurations were produced with RAMBO R. Kleiss, W. J. Stirling S. D. Ellis

TENS(DR HEPTAGON rator = l.p ₂ >	< l.p4		
p ₁ =	(-2.500000,	0,	0,	-2.500000)
$p_2 =$	(-2.500000,	0,	0,	2.500000)
p ₃ =	(-0.431770,	0.076067,	-0.188168,	0.381094)
p4 =	(-1.400590,	0.415630,	1.316019,	-0.238745)
p₅ =	(-0.637612,	0.452245,	0.415891,	-0.170465)
p ₆ =	(-2.070650, -	-1.160727,	-1.663772 ,	0.414928)
p7 =	$- p_1 - p_2 - p_2$	3 – p ₄ – p ₅	– p ₆	
m ₁ =	$m_1 = m_3 = m_4 =$: m ₅ = m ₆ =	m ₇ = 4.5067	60
LTD:	REAL = -2.59	6352 10 ⁻⁸ +	-/- 2.037989	10-12
LTD:	IMAG = -1.14	1076 10 ⁻⁷ +	-/- 7.837520	10-12

Heptagons

SCALAR HEPTAGON – ALL MASSES DIFFERENT
numerator = 1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$m_{1} = 4.506760$ $m_{1} = 2.814908$ $m_{3} = 1.427626$ $m_{4} = 7.621541$ $m_{5} = 5.269166$ $m_{6} = 3.521039$ $m_{7} = 5.888145$
LTD: REAL = $-3.658536 \ 10^{-9} \ +/- \ 7.852153 \ 10^{-13}$ LTD: IMAG = $-5.843570 \ 10^{-9} \ +/- \ 7.851541 \ 10^{-13}$

SCALAR OCTAGON			
numerator = 1			
$p_1 = (-2.500000)$	0,	0,	-2.500000)
$p_2 = (-2.500000)$	0,	0,	2.500000)
$p_3 = (-0.427656)$	0.041109,	-0.180818,	0.385362)
$p_4 = (-0.907144)$	0.289299,	0.859318,	2.805929)
$p_5 = (-0.414246)$	0.329547,	0.249476,	-0.027570)
$p_6 = (-1.907351)$	-0.950926,	-1.460214,	0.775566)
$p_7 = (-0.271157)$	0.155665,	0.039639,	-0.218456)
$p_8 = -p_1 - p_2 -$	p ₃ – p ₄ – p ₅	- p ₆ - p ₇	
$m_1 = m_2 = m_3 = m_4$	$= m_5 = m_6 =$	$m_7 = m_8 = 4$	506760
LTD: REAL = -2.0	79457 10 ⁻¹¹	+/- 6.283601	10 ⁻¹⁵
LTD: IMAG = 9.4	39531 10 ⁻¹¹	+/- 6.273917	10 ⁻¹⁵

רן	ENS	OR OCTAGON				
r	nume	rator = l_p_2	x l.p₄			
١r) ₁ =	(-2.500000,	0,	0,	-2.500000)	
1 r) ₂ =	(-2.500000,	0,	0,	2.500000)	
ļ) ₃ =	(-0.427656,	0.041109,	-0.180818,	0.385362)	
l r) ₄ =	(-0.907144,	0.289299,	0.859318,	2.805929)	
ľ) 5 =	(-0.414246,	0.329547,	0.249476,	-0.027570)	
ľ) ₆ =	(-1.907351,	-0.950926,	-1.460214,	0.775566)	
ľ)7 =	(-0.271157,	0.155665,	0.039639,	-0.218456)	
ľ)8 =	- p ₁ - p ₂ -	p ₃ – p ₄ – p ₅	$p_6 - p_6 - p_7$		
Ľ						
n	η ₁ =	$m_2 = m_3 = m_4$	$= m_5 = m_6 =$	$m_7 = m_8 = 4$.	506760	
L						
L	TD:	REAL = -3.7	74487 10-10	+/- 3.396473	10-14	
L	TD:	IMAG = 2.8	27604 10 ⁻⁹	+/- 3.393935	10-14	

Octagons

SCALAR OCTAGON – ALL MASSES DIFFERENT
numerator = 1 $p_1 = (-2.50000, 0, 0, 0, -2.50000)$ $p_2 = (-2.50000, 0, 0, 0, 2.50000)$ $p_3 = (-0.427656, 0.041109, -0.180818, 0.385362)$ $p_4 = (-0.907144, 0.289299, 0.859318, 2.805929)$ $p_5 = (-0.414246, 0.329547, 0.249476, -0.027570)$ $p_6 = (-1.907351, -0.950926, -1.460214, 0.775566)$ $p_7 = (-0.271157, 0.155665, 0.039639, -0.218456)$ $p_8 = -p_1 - p_2 - p_3 - p_4 - p_5 - p_6 - p_7$
$m_{1} = 4.506760$ $m_{2} = 2.814908$ $m_{3} = 1.427626$ $m_{4} = 7.621541$ $m_{5} = 5.269166$ $m_{6} = 3.521039$ $m_{7} = 5.888145$ $m_{8} = 4.422515$
LTD: REAL = $6.826303 \ 10^{-10} \ +/- \ 3.731196 \ 10^{-13}$ LTD: IMAG = $9.173787 \ 10^{-10} \ +/- \ 3.701180 \ 10^{-13}$

Conclusions & Outlook

- The Loop-Tree Duality has many appealing theoretical properties
- Here we have updated numerical results from an implementation of the method suitable for computing one-loop Feynman diagrams
- The method seems to excel in cases where we have many legs and many different scales as the increase of the run time is rather mild
- Near future: 6- and 8-photon amplitudes