

Highlights from the BSM session

PhysTev 2019

Les Houches - 28 June 2019

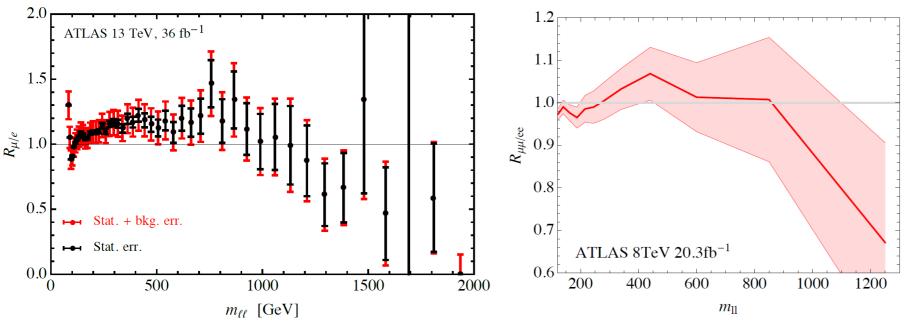
Riccardo Torre CERN & INFN Genova

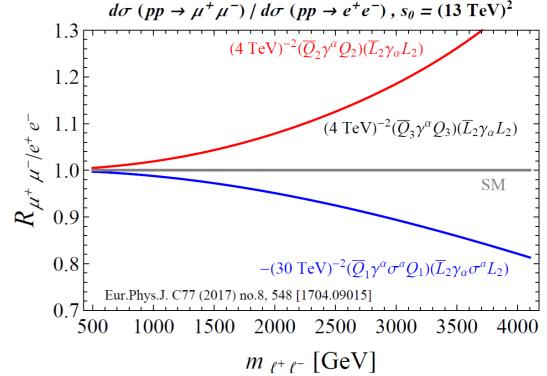
on behalf of the

BSM Conveners: Gustaaf Brooijmans, Marco Nardecchia, Riccardo Torre, Giovanni Zevi della Porta

BSM activities

- Flavor anomalies seem to be still intriguing for the BSM community
- Flavor was the leading topic in the BMS working group
- There is interest both in flavor model building and in high-pT implications of flavor anomalies
- The high-pT flavor precision program joins the electroweak precision program (and both are part of the very active EFT studies at the LHC, also relevant for the Higgs BSM working group)
- Other ideas, extend the implications of flavor anomalies towards Dark Matter
- Some working groups also interested in VLQ, LLP and DM signatures at the LHC


All activity well documented on the Wiki


Project pages

- LQ single production in top,tau,neutrino (Priscilla)
- New Signatures of VLQs (Thomas)
- UV Model for flavour anomalies FCNC (Werner)
- RDM (Jose Zurita)
- Tagging SM hadrons in LLP searches (Jan)
- Freeze-in from scattering at the LHC (Andreas)
- High-pT dilepton tails: LFU ratio with actual data (Tanya) 1
- High-pT dilepton tails: SMEFT and LFU (David)
- High-pT tails: pp--> tau nu + b (Giacomo)

High-pT dilepton tails: LFU ratio with actual data

- Team: Tanya Berger-Hryn'ova, Dario Buttazzo, Juhi Dutta, David Marzocca, Marco Nardecchia, Minho Son
- Aim: investigate R=d σ (pp \rightarrow µµ)/d σ (pp \rightarrow ee) for deviations from unity as expected in some BSM scenarios
- Theoretical uncertainties at high mass will cancel in such ratio
- No experimental results of this kind is directly available, public results from <u>ATLAS resonant search at 13TeV (36fb⁻¹)</u>* and <u>ATLAS SM DY measurement at 8TeV 20fb⁻¹</u> are used

Results are statistically limited and currently consistent with unity within ~1 σ

Improvement is expected with an increase of the dataset as well as combined ATLAS+CMS high mass DY differential cross-section measurement

*For the search DY includes Photon Induced processes (same for ee and $\mu\mu$)

High-pT dilepton tail - SMEFT limits

Participants: Aoife Bharucha, Dario Buttazzo, Juhi Dutta, Berni Gaud, Tetiana Hrynova, David Marzocca, Marco Nardecchia, Giacomo Polesello, Priscilla Pani, Minho Son, Elena Venturi, Natascia Vignaroli, Tevon You

Goals:

1) Provide a global likelihood for deriving limits on ALL four-fermion SMEFT operators contributing to $pp \rightarrow \ell^+ \ell^-$ (where $\ell = \mu, e$ - separately)

2) Study the impact of **angular observables** in the fit $(\Delta \eta_{\ell \ell})$

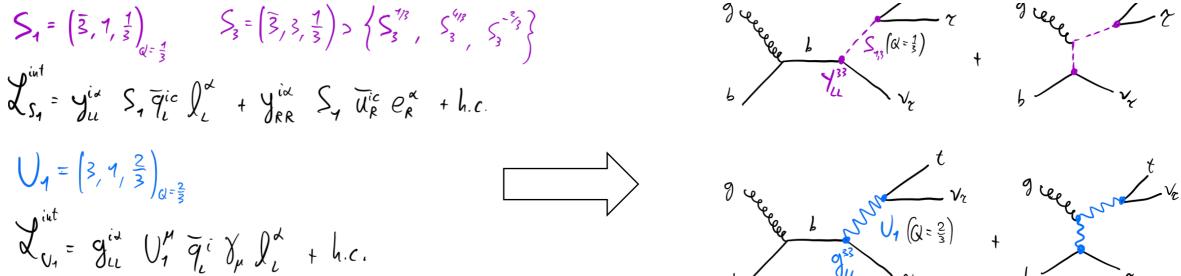
Done:

We discussed the physics goals and prepared a UFO model for all relevant operators

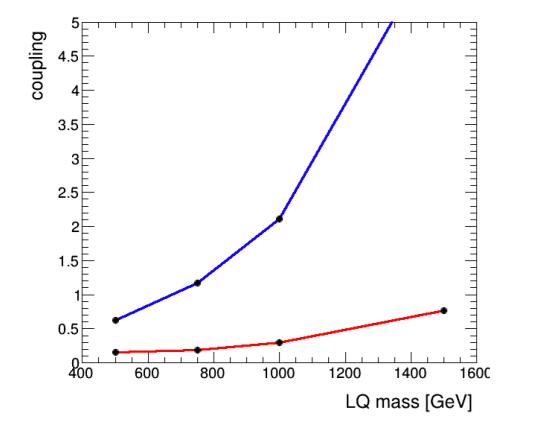
To Do:

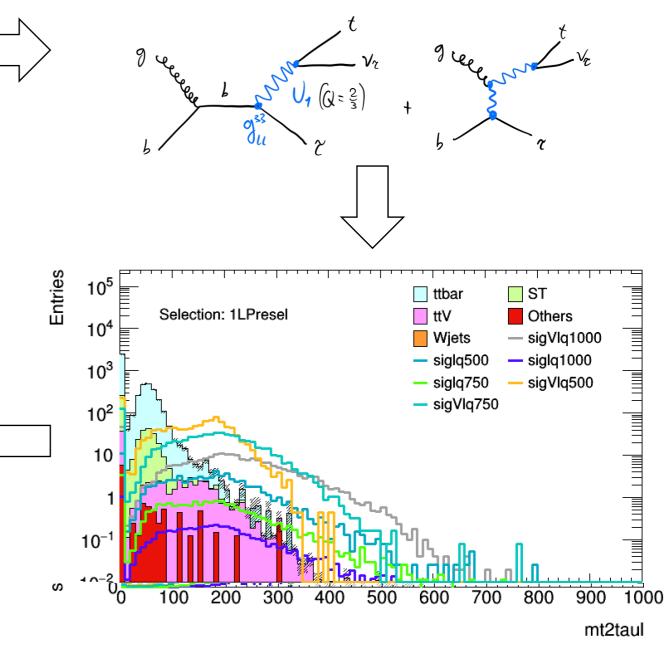
We will start by using Drell-Yan data from ATLAS 8 TeV, which shows Born-level doubledifferential cross-section and all uncertainties. Eventually, extend to 13 TeV analyses when available.

$$\mathcal{L}_{\rm EFT} = \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + O(\Lambda^{-4}).$$

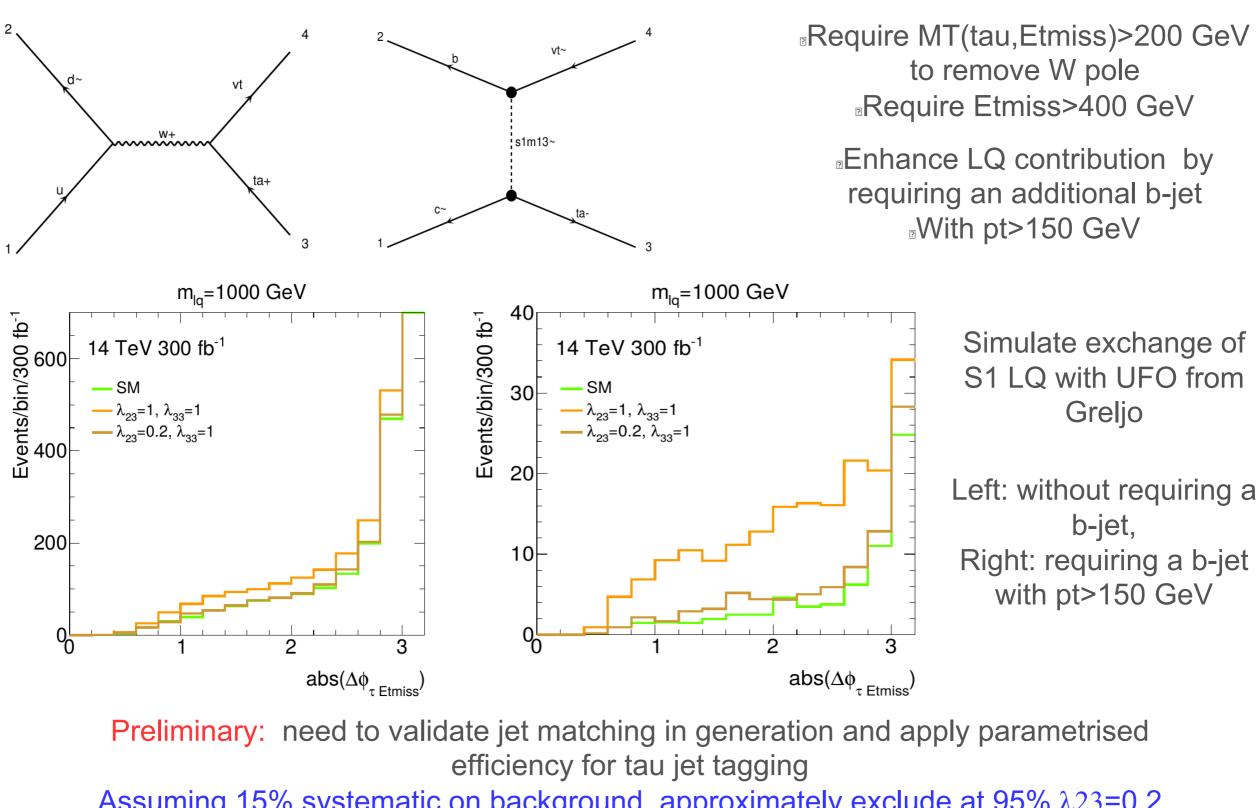

$$\begin{array}{ll} (\mathcal{O}_{lq}^{(1)})_{\alpha i} = (\bar{l}_{\alpha}\gamma_{\mu}l_{\alpha})(\bar{q}_{i}\gamma^{\mu}q_{i}) \\ (\mathcal{O}_{qe}) = (\bar{q}_{i}\gamma^{\mu}q_{i})(\bar{e}_{\alpha}\gamma^{\mu}e_{\alpha}) \\ (\mathcal{O}_{lu})_{\alpha i} = (\bar{l}_{\alpha}\gamma_{\mu}l_{\alpha})(\bar{u}_{i}\gamma^{\mu}u_{i}) \\ (\mathcal{O}_{eu})_{\alpha i} = (\bar{l}_{\alpha}\gamma_{\mu}l_{\alpha})(\bar{u}_{i}\gamma^{\mu}u_{i}) \\ (\mathcal{O}_{eu})_{\alpha i} = (\bar{l}_{\alpha}\gamma_{\mu}l_{\alpha})(\bar{u}_{i}\gamma^{\mu}u_{i}) \\ \end{array}$$

 $18 (\mu) + 18 (e)$ operators to consider (no top)


$$\frac{d^2 \sigma(pp \to \ell \ell)}{dm_{\ell \ell} d\Delta \eta_{\ell \ell}} \longrightarrow \text{Compare limits} \longleftarrow \frac{d\sigma(pp \to \ell \ell)}{dm_{\ell \ell}}$$


Single-production of third-generation LQ with tops and missing energy in the final state.

• Participants: Dario Buttazzo, David Marzocca, Priscilla Pani, Giacomo Polesello


See also CMS analysis in 1806.03472 (LQ->btau)

τv final state from t-channel LQ exchange

Participants: D. Marzocca, M. Nardecchia P. Pani, G. Polesello

Assuming 15% systematic on background, approximately exclude at 95% λ 23=0.2 λ 33=1 with a 300 fb-1 LHC

Plan: map for LHC and HL-LHC coverage on coupling space

UV Model for flavour anomalies FCNC

Aoife Bharucha, Jon Butterworth, Thomas Faber, Thomas Flacke, Benjamin Fuks, Adil Jueid, Yang Liu, Priscilla Pani, Giacomo Polesello, Werner Porod, David Yallup

- Model (extension of arXiv:1808.05511)
 - gauge group: $SU(4) \times SU(2)_L \times U(1)_R$
 - vector particles: $SM + U_1 + Z_{B-L}$
 - Fermions: SM + 3 gen. ν^{c} + 2 gen. vector-like leptons L_i (+ vector quarks)
 - ► scalars: 2HDM + scalar gluons G^0 , G^+ + LQ R_2 , \tilde{R}_2
- ► Aims:
 - 2 sets of benchmark scenarios: (i) one explaining B-physics anomalies, (ii) one assuming that these anomalies are gone check consistency with LHC data using contur + MadAnalysis
 - ► some interesting decays: $G^+ \rightarrow t\bar{b}, LQ^{1/3} \rightarrow \bar{b}\nu^c, LQ^{2/3} \rightarrow t\nu^c, \nu^c \rightarrow b\bar{c}l^+, LQ \rightarrow L_iq$
 - study of specific channels which can also serve as simplified models for BSM searches, e.g.

 $pp \to LQ^{-1/3}I^+ \to b\bar{\nu}^c I^+ \to \bar{b}bcI'^- I^+$ $pp \to LQ^{2/3}I^- \to t\nu^c I^- \to tb\bar{c}I'^+ I^ pp \to LQ\bar{L}Q \to L_i^- L_j^+ q\bar{q}'$

- status:
 - SPheno + interface to flavio ready,
 - creating UFO-file and setting up contur to explore LHC constraints; on the way to explore LHC phenomenology

RDM project

Merry crew (in <u>INVERSE</u> alphabetical order): J. Zurita, D. Sengupta, G. Polesello, P. Pani, J.M. No, A. Lessa, A. Jueid, J. Heisig, B. Fuks, C. Delaunay, B. Bhattacherjee, A. Bharucha, J. Bernigaud, G. Bélanger

Goal: relate the S1 LQ model that solves RD and RD* "anomalies" to dark matter.

Project roadmap:

- 1) UFO model including 3 new fields (S₁, χ_1, χ_0) and 3 new couplings (y_D, y^L₃₃, y^R₂₃)
- 2) Find a viable point that solve flavor anomalies, RD ~ $y_{33*}^L y_{23}^R / (m_{s1})^2$
- 3) Check model viability w.r.t:
 - 1) Flavor constraints $(y_{33}^L, y_{23}^R, m_{S1})$
 - 2) Direct LQ production: m_{S1} , BRs (S₁ -> SM, dark)
 - 3) Monojet bounds (mostly on $m_{\chi 1}$)
 - 4) S1 associated production with hard lepton (recast existing searches? new searches? for 21 + j) \checkmark
 - 5) Dark matter: Ωh^2 from either co-annihilation or conversion driven freeze-out
 - 6) Existing LQ (resonant) + MET search from CMS (no ATLAS search yet?)
- 4) Write down proceeding (internal deadline Dec 1st)
- 5) Publish paper (after LH2019 proceedings appear on arXiv).

exotic VLQ decays, bounds, signatures

[Thomas Flacke, Benjamin Fuks, Werner Porod, Minho Son, Tetiana Berger-Hryn'ova, Louie Corpe, ++]

Many SM extensions with VLQs (Q) also contain BSM bosons which might be lighter than Q.

New VLQ decays can be classified according to the VLQ and boson quantum numbers:

$\psi_{\rm VLQ} = (3, 1, Y)$				$\psi_{\mathrm{VLQ}} = (3, 2, Y)$				$\psi_{ ext{VLQ}} = (3, 3, Y)$				
ψ_{SM}	scalar	$\psi_{ m VLQ}$	$Q_{ m VLQ}$	$\psi_{\rm SM}$	scalar	$\psi_{ m VLQ}$	$Q_{ m VLQ}$	$\psi_{\rm SM}$	scalar	$\psi_{ m VLQ}$	$Q_{ m VLQ}$	
q_L	(1 ⊕ 8 , 2 ,1/2)	(3,1,2/3)	2/3	t_R	(1 ⊕ 8 ,2,1/2)	(3,2,1/6)	(2/3,-1/3)	q_L	(1 ⊕ 8 , 2 ,1/2)	(3,3,2/3)	(5/3, 2/3, -1/3)	etc.
		(3 , 1 ,-1/3)	-1/3			(3,2,7/6)	(5/3,4/3)			(3,3,- 1/3)	(2/3,-1/3,-4/3)	
				b_R	(1 ⊕ 8 , 2 ,1/2)	(3,2,1/6)	(2/3,-1/3)	(Lest Les Lleveles 1802 10270)				
						(3,2,-5/6)	(-2/3,-4/3)	(Last Les Houches 1803.10379)				L

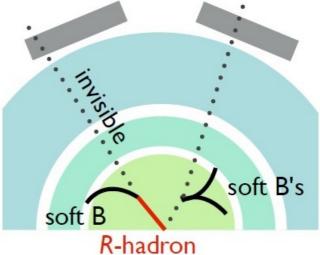
With these decays, VLQ pair production gives a multitude of new final states, and current search bounds and sensitivities are altered.

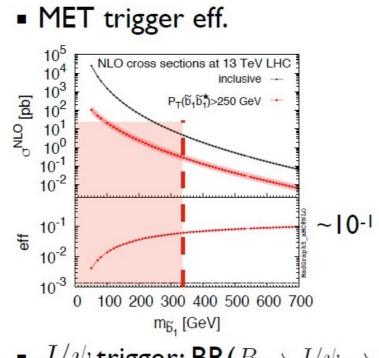

Aim of the LH working group:

- Build (public) VLQ + scalar effective model implementation for event generators
- Determine bounds from existing searches and measurements (Contur, MA, CheckMATE)
- Survey new final states: where are the gaps? where are lighthouses?

Freeze-in with large couplings @ the LHC

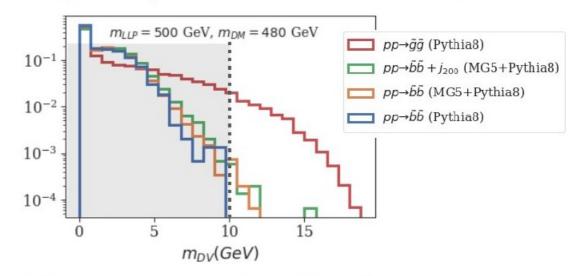
People interested: G. Belanger, A. Bharucha, F. Boudjema, C. Delaunay, N. Desai, J. Dutta, A. Goudelis, J. Heisig, S. Kraml, A. Lessa, J. M. No, S. Sekmen, D. Sengupta, H.-S. Shao, J. Zurita


Freeze-in typically involves tiny couplings of DM with the Standard Model.


LLPs from DM with 'softish' decays

14 people interested: Genevieve Belanger, Aoife Bharucha, Biplob Bhattacherjee, Nishita Desai, Benjamin Fuks, Andreas Goudelis, Jan Heisig, Andre Lessa, Jose Miguel No, Priscilla Pani, Sezen Sekmen, Dipan Sengupta, Hua-Sheng Shao, José Zurita

- Search region not targeted so far: DM t-channel mediator model with O(10) GeV mass splitting and small couplings → LLPs [Realized e.g. in conversion-driven FO 1705.09292]
- Explore trigger and search strategies!


Trigger:

- J/ψ trigger: BR($B \rightarrow J/\psi \rightarrow \mu\mu$)=10⁻³
- Timing trigger? [see e.g. 1805.05957]

Search strategy:

Displaced jets+MET; suffers from minv-cut:

- Disappearing tracks; suffers from veto next layer
- Kinked tracks; kink to large?
- B's decaying in ECAL/HCAL? Prompt searches? [see e.g. 1902.03094]

Motivation

and scope

Conclusion

The BSM session was very successfull

Lots of promising studies towards good contributions to the proceedings

Thanks to all BSM participants and hope to see you again in LH!