Topics for SM Higgs discussions

- experimental perspective -

11th June 2019 Mauro Donega, <u>Michael Duehrssen-Debling</u>

Experimental Highlights

STXS Higgs measurements

- STXS started in Les Houches 2015
- Both experiments have produced STXS measurements
- Kinematic information for ggH, VBF and VH is extracted

ATLAS-CONF-2019-005

ATL-PHYS-PUB-2019-009

STXS interpretations

ATLAS-CONF-2019-005

ATLAS-CONF-2019-004 >

ttH measurements

- Observed Higgs production in association with tops
- Uncertainty O(20-30%)

Differential cross section combination

- Combined differential cross section measured in different final states to increase statistical power
- 30-40% uncertainty per bin (up to 25% better than H→γγ alone at low pT);
- 60% at high pT because of ggHbb

Differential cross section interpretation

- Parametrize differential cross sections as a function of couplings and constrain them fitting pT
- ggH contact interaction disfavoured. Interplay between normalization and shape information

HH combination

- Combined upper limits on Higgs pair production
- Experiments have different sensitivities on the different channels, but similar when combined

Some proposed topics for the Les Houches discussions

Here are some challenges in Higgs measurements. This list is for sure not complete, but rather intended to start the discussions!

- Parton shower systematics
- ttH backgrounds (might also apply to VHbb)
- Quark/gluon jet tagging
- ttH*(H*->tt) and tttt interference
- Background function choice for H->gamgam and H->mumu
- STXS in Higgs production (ttH, VBF/VH angles, ...)
- Brainstorming for "STXS" or similar in Higgs decays
- EFT interpretation of Higgs measurements
- Other topics are very welcome!

Modelling systematics (parton shower)

- A bit "fuzzy", often experiments label everything that is not related to missing higher order (QCD scale) or PDF variations as modelling systematics, sometimes just "parton shower or underlying event+parton shower"
 - Actual parton shower tune variations
 - Comparisons between different (parton shower) generators
 - Possible hadronization effects
 - Possible underlying event effects
- Depending on the evaluation, effects can be sizeable and inclusion in experimental results is not fully consistent
- Some of the included variations double count other uncertainties, e.g. resummation uncertainties

ttH backgrounds (tt+bb)

- tt+HF (HF=bb,cc) is the dominant background for ttHbb measurements and it's systematic uncertainty limits or will limit measurements
- On top of cross section systematics, also large systematics on the tt+HF modelling could play a role depending on the used tt+HF background model

ttH backgrounds (ttV)

- ttZ and ttW are the main backgrounds to the ttH multilepton measurements and their cross section uncertainty has a large systematic impact
- Once ttZ or ttW are measured from control regions, the corresponding modelling systematics will likely become large/dominant

CMS: 2234117

ATLAS: ATL-PHYS-PUB-2017-009

Quark gluon jet tagging

- Quark/gluon jet tagging is so far not widely used in Higgs measurements
- But promising to
 - better separate different Higgs production modes:
 ggH vs. VBF
 - o Better discriminate against backgrounds
- Experiments have already included it in some Higgs measurements, but the full potentially is likely not used yet

https://arxiv.org/abs/1602.01934

ttH*(H*->tt) and tttt interference

- Another way to measure a Higgs coupling in the off-shell regime, independent of the total width of the Higgs
- Allows to constrain the total width together with the on-shell measurements
- However, in 4-top events, so considerably more challenging compared to 4-leptons
- But also more sensitive

Backgrounds from functional form fits

- The background in H→γγ and H→μμ is determined from functional form fits
- ATLAS: spurious signal
 CMS: discrete profiling method of functional forms
- So far systematics not really limiting: experiments "improve" functional forms to ensure this
- But: with increasing data stats, finding good fitting functions and evaluating the systematics/bias is getting more challenging

Source	471.40	Uncertainty in fiducial cross section				
10-	ATLAS: <u>1802.04146</u>	Diphoton	VBF-enhanced	$N_{ m lepton} \ge 1$	$t\bar{t}H$ -enhanced	High $E_{\rm T}^{\rm miss}$
Fit (stat.)		17%	22%	72%	176%	53%
Fit (syst.)		6%	9%	27%	138%	13%
Photon energy scale & resolution		4.3%	3.5%	3.1%	10%	4.1%
Backg	ground modelling	4.2%	7.8%	26.7%	138%	12.2%
			12/75			

STXS in Higgs production

- The STXS framework for Higgs measurement is used by ATLAS and CMS to report fine grained kinematic measurements for ggH, VBF and VH
- Recent update to V1.1: [1906.02754]

STXS in Higgs production (session Wed, 14-16:00)

- The STXS framework for Higgs measurement is used by ATLAS and CMS to report fine grained kinematic measurements for ggH, VBF and VH
- Recent update to V1.1: https://cds.cern.ch/record/2669925/

Several improvements are pending for STXS

- ttH is just inclusive so far. How to bin ttH?
- ggH pT binning stops at 200 GeV, but the experimental reach goes further
- Angular correlations in VBF jets (dphi_jetjet?)
 provide interesting information, but are not extracted in STXS measurements so far
- Theory uncertainties and correlations for new STXS bins (and sub-bins)

Brainstorming: "Something" for decays (session Wed, 16-18:00)

- Long pending question: how should experiments make general measurements of Higgs properties in Higgs decays (for example angular information in h->4l)
- Experiments have used the Higgs characterization model, effective Lagrangians, EFTs, f_{ai}, pseudo-observables, ...
- But no general agreement!
 - -> Decay information often not included in theory interpretations
- Differential measurements are usually 1D, maximal 2D, so limited
- Les Houches is a good place for finding consensus and making proposals for something general

EFT interpretation of Higgs measurements (session Thu, 10-12:00)

Topics for discussion

- Selection of the EFT parameters (or combination of them) that a measurement is able to constrain in the Warsaw basis.
- Effects of neglecting, or how to properly include gg->ZH
- STXS acceptance extrapolation (related for STXS in decays)
- Simulation at NLO, in particular, if a common Madgraph syntax can be provided

Observed HEL constraints with H \rightarrow ZZ* and H $\rightarrow \gamma\gamma$

Higgs brainstorming

Today, 17:30-18:30, Library!