Cut-based Higgs cross-section measurement in the tautau decay channel (36/fb)

Sig	nal Region	Inclusive	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$	
VBF	$\operatorname{High-}\!p_{\mathrm{T}}^{\tau\tau}$	$p_{\mathrm{T}}^{j_2} > 30 \mathrm{GeV}$ $ \Delta \eta_{jj} > 3$			$p_{\rm T}^{\tau\tau} > 140 \mathrm{GeV}$ $\Delta R_{\tau\tau} < 1.5$	
	Tight	$m_{jj} > 400 \text{GeV}$ $\eta_{j_1} \cdot \eta_{j_2} < 0$	$m_{jj} > 800 \mathrm{GeV}$	$m_{jj} > 500 \text{GeV}$ $p_{\text{T}}^{\tau\tau} > 100 \text{GeV}$	Not VBF high- $p_{\rm T}$ $m_{jj} > (1550 - 250 \cdot \Delta \eta_{jj}) \text{GeV}$	
	Loose	Central leptons	Otherwise			
Boosted	$\mathrm{High} ext{-}p_{\mathrm{T}}^{ au au}$	Loose Not VBF $p_{\mathrm{T}}^{\tau\tau} > 100 \mathrm{GeV}$	Tight	$p_{\mathrm{T}}^{\tau\tau} > 14$ $\Delta R_{\tau\tau} <$		
Вос	$- \text{Low-} p_{\text{T}}^{\tau\tau}$	PT > 100 GeV	Otherwise			

Process	Particle-level selection	σ [pb]	$\sigma^{ ext{SM}}\left[ext{pb} ight]$
ggF	$N_{\text{jets}} \ge 1,60 < p_{\text{T}}^H < 120 \text{GeV}, y_H < 2.5$	1.79 ± 0.53 (stat.) ± 0.74 (syst.)	0.40 ± 0.05
ggF	$N_{\text{jets}} \ge 1, p_{\text{T}}^H > 120 \text{GeV}, y_H < 2.5$	0.12 ± 0.05 (stat.) ± 0.05 (syst.)	0.14 ± 0.03
VBF	$ y_H < 2.5$	0.25 ± 0.08 (stat.) ± 0.08 (syst.)	0.22 ± 0.01

		Boost		
		loose	tight	
	fwdH	0	0	
	VBFtopo jet3	2	2	
	VBFtopo jet3veto	1	1	
	J0	0	0	
	1J ptH 0 60	0	0	
aaU	1J ptH 60 120	34	0	
ggH	1J ptH 120 200	40	28	
	1J ptH gt200	0	26	
	ge2J ptH 0 60	0	0	
	ge2J ptH 60 120	21	0	
	ge2J ptH 120 200	40	37	
	ge2J ptH gt200	1	56	


Already from these numbers some reach for pTH > 200GeV

(side-note:

120GeV boundary not ideal, larger contamination from fakes < ~140GeV)

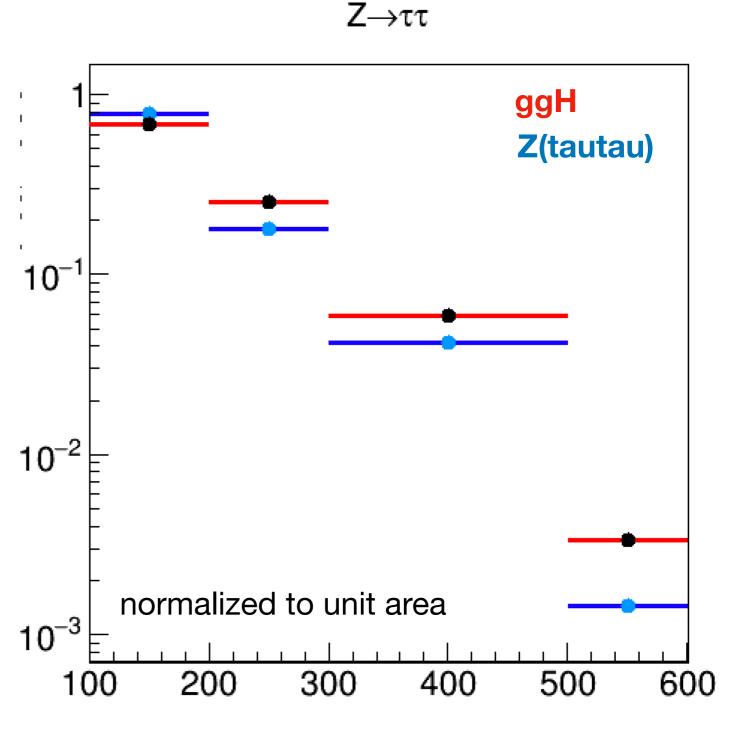
Slightly more detailed look at pTH>200GeV

Consider events passing current "reco-level" selection, look only at truth-level quantities (L=140/fb)

Possible Options for main p_T^H bins

• Coarser: [200, 350, 500, (750), (1000)]

• Finer: [200, (250?), 300, (400), 500, (650), 800, (1000)]

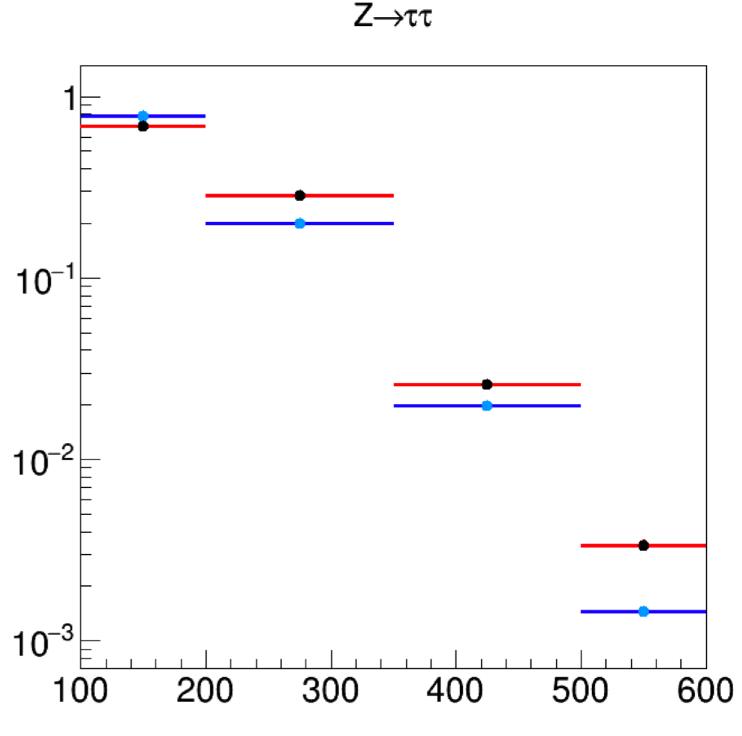

Selection **not** optimized for high-pTH (hadhad) rapidly loosing power from dR(tautau) selection

Very simple S/sqrt(S+B) in each bin of pTH, gives an idea of the relative sensitivity of the pTH bins across the spectrum

(**not** a realistic estimate of the absolute sensitivity since no info on the m(tautau) discriminating variable is used)

Scaling the "boosted (pTH>100GeV)" 36/fb sensitivity to 140/fb, sigma~6 (many assumptions!)

pTH [GeV]	S/sqrt(S+B)	"sigma"
100-200	0.06	4.5
200-300	0.046	3.5
300-500	0.02	1.5
>500	0.01	0.8

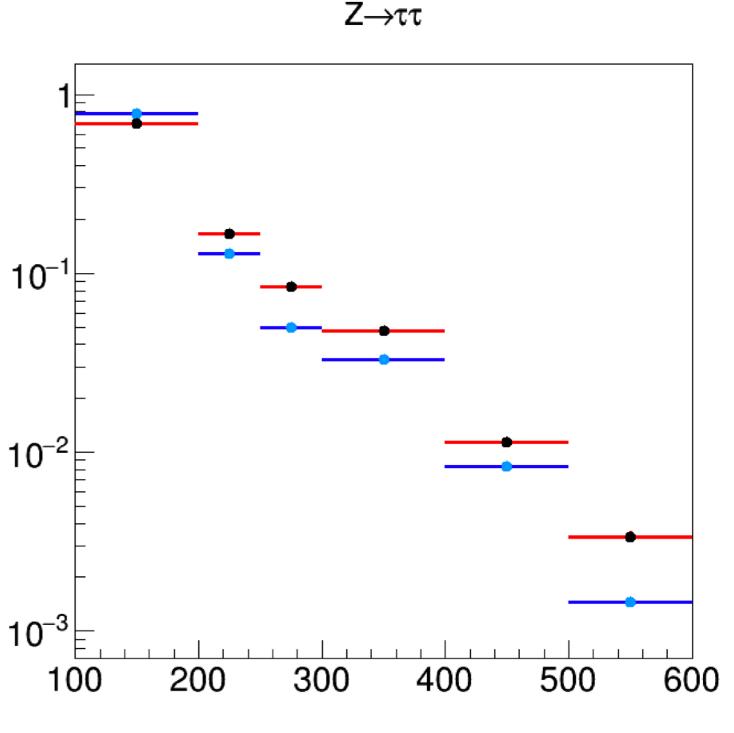


Very simple S/sqrt(S+B) in each bin of pTH, gives an idea of the relative sensitivity of the pTH bins across the spectrum

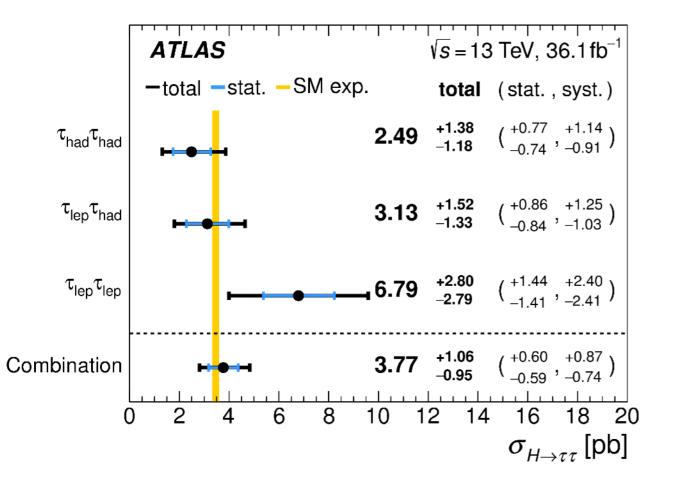
(**not** a realistic estimate of the absolute sensitivity since no info on the m(tautau) discriminating variable is used)

Scaling the "boosted (pTH>100GeV)" 36/fb sensitivity to 140/fb, sigma~6 (many assumptions!)

pTH [GeV]	S/sqrt(S+B)	"sigma"
100-200	0.06	4.5
200-350	0.049	3.7
350-500	0.014	1.1
>500	0.01	0.8



Very simple S/sqrt(S+B) in each bin of pTH, gives an idea of the relative sensitivity of the pTH bins across the spectrum


(**not** a realistic estimate of the absolute sensitivity since no info on the m(tautau) discriminating variable is used)

Scaling the "boosted (pTH>100GeV)" 36/fb sensitivity to 140/fb, sigma~6 (many assumptions!)

pTH [GeV]	S/sqrt(S+B)	"sigma"	
100-200	0.06	4.5	
200-250	0.036	2.7	
250-300	0.03	2.2	
300-400	0.02	1.5	
400-500	0.01	8.0	
>500	0.01	0.8	

BACK-UP

	$\tau_{\rm had} \tau_{\rm had} \ { m VBF}$			$\tau_{\rm had}\tau_{\rm had}$ boosted	
	Loose	Tight	$\text{High-}p_{\mathrm{T}}^{\tau\tau}$	$\text{Low-}p_{\text{T}}^{\tau\tau}$	$\operatorname{High-}\!p_{\mathrm{T}}^{\tau\tau}$
$Z \to \tau \tau$ Misidentified τ Other backgrounds	67.3 ± 9.2 45.0 ± 5.4 4.4 ± 1.4	100 ± 12 96.4 ± 9.2 11.6 ± 1.7	141 ± 12 20.0 ± 2.9 4.4 ± 0.7	3250 ± 130 1870 ± 140 281 ± 21	3582 ± 82 364 ± 53 109.9 ± 9.2
$ggF, H \to \tau\tau$ $VBF, H \to \tau\tau$ $WH, H \to \tau\tau$ $ZH, H \to \tau\tau$ $t\bar{t}H, H \to \tau\tau$	1.1 ± 0.4 1.4 ± 0.5 < 0.1 < 0.1 < 0.1	2.0 ± 0.7 6.4 ± 1.8 < 0.1 < 0.1 < 0.1	3.5 ± 1.0 11.2 ± 3.0 < 0.1 < 0.1 < 0.1	41 ± 11 9.0 ± 3.4 3.3 ± 0.9 2.4 ± 0.7 1.6 ± 0.5	48 ± 14 10.7 ± 2.9 4.4 ± 1.2 2.9 ± 0.8 1.9 ± 0.5
Total background Total signal	116.7 ± 9.4 2.6 ± 0.8	$208 \pm 12 \\ 8.6 \pm 2.4$	165 ± 12 14.9 ± 3.8	$\begin{array}{cccc} 5401 & \pm & 78 \\ 57 & \pm & 15 \end{array}$	$ \begin{array}{r} 4057 & \pm 64 \\ 68 & \pm 18 \end{array} $
Data	121	220	179	5455	4103