

80500

2σ

-1σ

186 188

m, [GeV]

W mass discussion

W mass discussion

SM phenomenology group (J. Huston, A. Huss, M. Pellen, P. Azzurri)

- (non-perturbative) modeling
- new ideas/methods (asymmetry)
- determination at e+e-
- theory agnostic determination; how agnostic? (Tanmay Sarkar)

Future e+e- collider measurements of the W mass & width

from pervious presentations and: *The W mass and width measurement challenge at FCC-ee* <u>arXiv:2107.04444</u>

future e+e- mW digest

1. from WW threshold cross sections at $E_{CM} \simeq 157.5-162.5$ GeV $\rightarrow \Delta m_w = 0.3$ MeV [10/ab] Syst : Theory calculations / E_{CM} / acceptance / background

2. from decay kinematics mostly at $E_{CM} \simeq 240 \text{ GeV}$ and E_{beam} (LEP2) $\rightarrow \Delta m_w = 1-0.5 \text{ MeV} (\text{stat}) [2-5/\text{ab}] : 2-5 \text{ MeV} (\text{syst}) ?$ Syst : Theory modeling (NP QCD) / E_{CM} / det calibration /

3. from lepton decay kinematics and hadronic decays without $E_{beam} \rightarrow \Delta m_w = 2 \text{ MeV (stat)} : 2-5 \text{ MeV (tot)}$? Syst : det calibration / Theory modeling (NP QCD)

The WW threshold lineshape and the W mass

160

180

5 200

W mass discussion

stat extrapolation to 10/ab $\implies \Delta m_W = 0.34 \text{ MeV}$

The WW threshold : W mass optimal E_{CM}

The WW threshold : W mass uncertainties

$$\sigma = \left(\frac{N}{L} - \sigma_B\right) \frac{1}{\varepsilon} \qquad \Delta m_W(stat) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \frac{\sqrt{\sigma}}{\sqrt{L}} \frac{1}{\sqrt{\varepsilon p}} \qquad \text{Statistical}$$

$$\Delta \sigma_{WW} = \frac{\Delta \sigma_B}{\varepsilon}$$

$$\Delta m_W(B) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{\Delta\sigma_B}{\varepsilon} \oplus \Delta\sigma_{TH}\right)$$

Background and Theory

$$\Delta \sigma_{\scriptscriptstyle WW} = \sigma \left(\frac{\Delta \varepsilon}{\varepsilon} \oplus \frac{\Delta L}{L} \right)$$

$$\Delta m_W(\varepsilon) = \sigma \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{\Delta\varepsilon}{\varepsilon} + \frac{\Delta L}{L}\right)$$

 $\Delta m_W(E) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{d\sigma}{dE}\right) \Delta E \le \frac{1}{2} \Delta E$

WW threshold : W mass and width

WW threshold : W mass and width

Scans of (E₁, E₂, f) data taking **assuming limiting** syst uncertainties, either $\Delta \varepsilon + \Delta L$ or $\Delta \sigma_B + \Delta \sigma_{TH}$

More complex situation, depends very much on the correlation of uncertainties between the energy points (that can be quite large)

Correlated syst can cancel taking data at different E_{CM} points where the relevant differential factors are equal (around their minima)

>2 energy points will be beneficial to reduce the impact of (correlated) systematic uncertainties careful choice of additional points recommended

partially explored in Eur. Phys. J. C 80 no. 1, (2020) 66

W mass from decay kinematics

Threshold four jet event

W mass from kinematics with 4P fit (LEP2)

Formula for 2-jets final state from $ee \rightarrow Z\gamma \rightarrow qq\gamma$

 $M_{\rm Z}^2 = s \frac{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 - \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 + \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}$

E_{CM} is again a main ingredient: sets jet energy scale other main ingredients are the jets (and lepton) **angles** secondary ingredients are the **jet velocities** ($\beta = p/E$)

statistical uncertainties ALEPH LEP2 \rightarrow FCCee extrapolated

Stat uncertainty	Δm _w	ΔΓ _w
e v qq	87 MeV → 0.9 MeV	200 MeV → 2 MeV
μν qq	82 MeV → 0.8 MeV	200 MeV → 2 MeV
τνqq	121 MeV \rightarrow 1.2 MeV	320 MeV → 3.2 MeV
qqqq	70 MeV → 0.7 MeV	120 MeV → 1.2 MeV
combined	43 MeV → 0.4 MeV	90 MeV → 0.9 MeV

LEP2 (ALEPH) from ~10k WW @ E_{CM} =183-209 GeV

11

W kinematic fit : systematics

EPOL ΔE_{CM} =0.3 MeV at E_{CM} =162.6 GeV [with Δm_W (stat)(162)~1 MeV] For larger E_{beam} at E_{CM} =240-365 GeV can make use of radiative Z-returns (Zy) and ZZ events ΔE_{CM} (240GeV)~2 MeV & ΔE_{CM} =(365 GeV) ~10 MeV

Table 9: Summary of the systematic errors on m_W and Γ_W in the standard analysis averaged ove 183-209 GeV for all semileptonic channels. The column labelled $\ell \nu q \bar{q}$ lists the uncertainties in m_W used in combining the semileptonic channels.

		$\Delta m_{\rm W} ~({ m MeV}/c^2)$				$\Delta \Gamma_{\rm W} ({ m MeV})$				
Source	$e\nu$	∕qą	μu q $ar{ ext{q}}$	$ au u$ q $ar{ ext{q}}$	$\ell u \mathrm{q} \mathrm{ar{q}}$	$\mathrm{e} u\mathrm{q}ar{\mathrm{q}}$	$\mu u { m q}ar{ m q}$	$ au u$ q $ar{ ext{q}}$	$\ell u \mathrm{q} \mathrm{ar{q}}$	
$e+\mu$ momentum		3	8	-	4	5	4	-	4	
$e+\mu$ momentum re	esoln	7	4	-	4	65	55	-	50	
Jet energy scale/li	nearity	5	5	9	6	4	4	16	6	
Jet energy resoln		4	2	8	4	20	18	36	22	
Jet angle		5	5	4	5	2	2	3	2	
Jet angle recolm		0	2	Û	Û	0	7	8	7	
Jet boost	1	17	17	20	17	3	3	3	3	
Fragmentation	1	10	10	15	11	22	23	37	25	
Radiative correction	ons	J	2	Û	J	ა	Z	2	2	
LEP energy		9	9	10	9	7	7	10	8	
Calibration ($e\nu q\bar{q}$	only) 1	10	-	-	4	20	-	-	9	
Ref MC Statistics		3	3	5	2	7	7	10	5	
Bkgnd contaminat	ion	3	1	6	2	5	4	19	7	

lepton and jet uncertainties from (Z) calibration data

W kinematic fit : systematics in 4q

Table 8: Summary of the systematic errors on $m_{\rm W}$ and $\Gamma_{\rm W}$ averaged over 183-209 GeV in the $q\bar{q}q\bar{q}$ channel for the standard, PCUT (= 3.0 GeV/c) and CONE (R=0.4) reconstructions.

	$\Delta m_{\rm W}$	$_{\rm V}~({\rm MeV}/$	V/c^{2})		$\Delta \Gamma_{\rm W} ~({\rm MeV})$	
Source	standard	PCUT	CONE	standard	PCUT	CONE
Jet energy scale/linearity	2	2	3	2	12	4
Jet energy resoln	0	1	0	7	9	10
Jet angle	6	6	6	1	3	3
Jet angle resoln	1	3	2	15	18	9
Jet boost	14	15	11	5	5	4
Fragmentation	10	20	20	20	40	40
Radiative Corrections	2	2	2	5	7	7
LEP energy	9	10	10	7	7	7
Ref MC Statistics	2	3	3	5	7	7
Bkgnd contamination	8	5	5	20	31	32
Colour reconnection	79	28	36	104	24	45
Bose-Einstein effects	0	2	3	20	10	10

W kinematic fit : FSI systematics in 4q

8

6

4

2

0

0

 $\Delta\chi^{2}$

2

_EP combined

 $k_{|}=1.26^{+0.84}_{-0.64}$

4

k,

---ALEPH

---- DELPHI

---- L3

----- OPAL

3

arXiv:2203.07622

W mass from lepton Energy and Pseudomass

Endpoints in the lepton (or jet) energy a $E\ell = E_{CM}(1 \pm \beta)$ where β is the W velocity

expected statistical Δm_W =4.4 MeV with 2/ab@250 GeV experimental syst from lepton energy calibration

W mass from the hadronic mass

arXiv:2011.12451

ΔM_W [MeV]	ILC	ILC	ILC	ILC
$\sqrt{s} \; [{ m GeV}]$	250	350	500	1000
$\mathcal{L} \; [\mathrm{fb}^{-1}]$	500	350	1000	2000
$P(e^{-})$ [%]	80	80	80	80
$P(e^+)$ [%]	30	30	30	30
jet energy scale	3.0	3.0	3.0	3.0
hadronization	1.5	1.5	1.5	1.5
pileup	0.5	0.7	1.0	2.0
total systematics	3.4	3.4	3.5	3.9
statistical	1.5	1.5	1.0	0.5
total	3.7	3.7	3.6	3.9

«.. dominated by the systematic uncertainties from the effective **jet energy scale** which is a challenging demand.. »

Les Houches - 13 June 2023

Δm_w =0.3-0.4 MeV $\Delta \Gamma_w$ =1 MeV

work ahead : WW threshold

- Evaluate theory requirements on total cross sections in the 157-162 GeV range
 - theory uncertainty evolution and correlation , 4f-interference effects
- Explore in more detail the systematic uncertainties (cancellation) effects with multi-point (n≥3) cross section measurements. Evaluate benefits of additional model independence.
 - reduction / cancellation of acceptance & luminosity systs is of particular interest
- Design a realistic a modern analysis with event classifiers, evaluate performances and the corresponding impact of systematic uncertainties. Feedback to theory and detector design.

• ..

Δm_w , $\Delta \Gamma_w$ = 2-5 MeV ?

work ahead : W decay kinematics 1

- Studies with a LEP-style m_W measurement : verify stat potential with different E_{CM} data and study the **impact of systematic uncertainties in** detail : feedback to theory and detector design
- Ultimate simultaneous analysis and fit of diboson events (WW, ZZ and $Z\gamma$) to extract m_W/m_Z with potential cancellations of systematic uncertainties both theoretical and experimental

...

Δm_w , $\Delta \Gamma_w$ = 2-5 MeV ?

work ahead : W decay kinematics 2

kinematic reconstruction methods that do not make use of E_{CM}. Most demanding on experimental systs (energy & momentum calibration of jets and leptons). → Detector requirements

• ...

- dedicated discussion on 4-jet final state interconnection effects
 - different impact of effects with or without Ecm kin fits ?
 - what will be the impact of CR (BE) effects ? Can it be avoided/reduced with dedicated strategies (pcut, cone, ...)
 - How will CR (BE) be measured/constrained in situ (inter-jet WW->4jets acivity) and in other hadronic final states eg Z-> multijets . Viable models ?

backup

The WW threshold W mass : beam energy

$$\Delta m_W(E) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{d\sigma}{dE}\right) \Delta E \le \frac{1}{2} \Delta E$$

Uncertainty on beam energy $\Delta E_b = \frac{1}{2}\Delta E$ translates directly to m_w

$$\Delta E_b \cong \Delta m_W$$

Very limited variations of the dm_W/dE coefficient with E_{CM} in the threshold region

WW threshold : W mass precision requirements

Conditions to achieve $\Delta m_W(syst) < \Delta m_W(stat) = 0.3$ MeV with a single point WW threshold measurement

current theory precision $\Rightarrow \Delta m_W = 3 \text{ MeV}$

$$\Delta m_W(B) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{\Delta\sigma_B}{\varepsilon} \oplus \Delta\sigma_{TH}\right)$$

Background and Theory

 $\Delta \sigma_{TH} < 1$ fb $(\Delta \sigma_{TH} / \sigma_{TH} < 2 \cdot 10^{-4})$ $\Delta \sigma_B / \varepsilon < 1$ fb $(\Delta \sigma_B / \sigma_B < 4 \cdot 10^{-3})$

$$\Delta m_{W}(\varepsilon) = \sigma \left(\frac{d\sigma}{dm_{W}}\right)^{-1} \left(\frac{\Delta\varepsilon}{\varepsilon} + \frac{\Delta L}{L}\right)$$

Acceptance and Luminosity

$$\left(\frac{\Delta\varepsilon}{\varepsilon}\oplus\frac{\Delta L}{L}\right) < 2\cdot 10^{-4}$$

$$\Delta m_{\scriptscriptstyle W}(E) = \left(\frac{d\sigma}{dm_{\scriptscriptstyle W}}\right)^{-1} \left(\frac{d\sigma}{dE}\right) \Delta E \leq \frac{1}{2} \Delta E$$

Collision energy $\Delta E_b < 0.3 MeV$ (

 $\Delta E_b < 0.3 \ MeV \ (\Delta E_b / E_b < 4 \cdot 10^{-6})$

The WW threshold : background syst

WW threshold : acceptance syst

Syst unc at higher E_CM (207 GeV) on $\sigma_{\rm WW}$ (~16pb)

					-
Source	uncertainty (fb)				
	$\ell u \ell u$	$\ell \nu q q$	qqqq	total	
Tracking	4	19	31	5	
Simulation of calorimeters	-	9	26	31	
Hadronization models	-	27	ð	35	
Z peak q \bar{q} fragmentation	-	-	20	20	
Inter W final state interaction	-	-	28	28	
Background contamination	Э	Б	31	35	
Lepton identification	1	2	-	3	
Beam-related background	10	17	37	22	
$\mathcal{O}(\alpha)$ corrections DPA	2	9	12	6	•
Luminosity	8	35	44	87	
Simulation statistics	6	20	14	25	
Total	17	57	87	126	:

$\sigma_{\rm WW}^{q\bar{q}q\bar{q}}$ (pb) $\sigma_{\rm WW}^{q\bar{q}l\nu}$ (pb) $\sigma_{\rm WW}^{l\nu l\nu}$ (pb) Source Four-jet modelling ± 0.051 ± 0.014 Background cross-sections ± 0.006 +0.009 ± 0.016 Fragmentation ± 0.045 ± 0.038 Final state interactions ± 0.025 Radiative corrections ± 0.002 T0.000 ±0.008 Luminosity (theor) ± 0.002 ± 0.011 ± 0.010 Lupinosity (exp) ± 0.045 ± 0.043 ± 0.011 Detector effects ± 0.033 ± 0.053 ± 0.045 Monte Carlo statistics ± 0.033 ± 0.005 ± 0.014

DELPHI Eur.Phys.J.C 34 (2004) 127

NP QCD effects have important impacts on both qqqq and $qq\ell v$

need improvements in fragmentation and hadronization modeling plus constraints from control data ($Z \rightarrow qq$)

less worrisome than using jet properties for kin reco

ALEPH Eur.Phys.J.C 38 (2004) 147

can roughly scale/4 for equivalent arepsilon effects at threshold $\sigma_{
m ww}$ (~4pb)

target : bring table items below 4fb(/4=1fb)

20-30fb on tables $\Rightarrow \Delta m_W$ = 1.5-2 MeV

$\sqrt{s} \; (\text{GeV})$	L (fb ⁻¹)	$\int f$	$\mid \lambda_{ m e^-}\lambda_{ m e^+}$	N_{ll}	N_{lh}	N_{hh}	N_{RR}
160.6	4.348	0.7789	-+	2752	11279	12321	926968
		0.1704	+-	20	67	158	139932
		0.0254	++	2	19	27	6661
		0.0254		21	100	102	8455
161.2	21.739	0.7789	-+	16096	67610	73538	4635245
		0.1704	+-	98	354	820	697141
		0.0254	++	37	134	130	33202
		0.0254		145	574	622	42832
161.4	21.739	0.7789	-+	17334	72012	77991	4639495
		0.1704	+-	100	376	770	697459
		0.0254	++	28	104	133	33556
		0.0254		135	553	661	42979
161.6	21.739	0.7789	-+	18364	76393	82169	4636591
		0.1704	+-	81	369	803	697851
		0.0254	++	43	135	174	33271
		0.0254		146	618	681	42689
162.2	4.348	0.7789	-+	4159	17814	19145	927793
		0.1704	+-	16	62	173	138837
		0.0254	++	10	28	43	6633
		0.0254		46	135	141	8463
170.0	26.087	0.7789	-+	63621	264869	270577	5560286
		0.1704	+-	244	957	1447	838233
		0.0254	++	106	451	466	40196
		0.0254		508	2215	2282	50979

Table 1: Illustrative example of the numbers of events in each channel for the standard 100 fb⁻¹ 6-point ILC scan with 4 helicity configurations. Columns give the center-of-mass energy, \sqrt{s} , the apportioned integrated luminosity, the fraction for each helicity configuration, $\lambda_{e^-}\lambda_{e^+}$, and the numbers of events observed in each channel.

 $\Delta m_W({
m MeV}) = 2.4 \ ({
m stat}) \oplus 3.1 \ ({
m syst}) \oplus 0.8 \ (\sqrt{{
m s}}) \oplus {
m theory}$

fitted $\Delta \varepsilon \sim 10^{-3}$ and $\Delta \sigma_B \sim 6$ fb additional impact of pol uncertainty

Les Houches - 13 June 2023

WW threshold @ ILC

arXiv:1603.06016 & arXiv:1908.11299

ILC polarised collisions : enhance (x4) t-channel WW production or suppress it to control background

Channel	Efficiency $(\%)$	$\sigma^U_{ m bkgd}$ (fb)	$A^B_{ m LR}$	Eff. syst. (%)	Bkgd syst.	$A_{\rm LR}^B$ syst.
lvlv	87.5	10	0.15	0.1	free	0.025
qqlv	87.5	40	0.30	0.1	free	0.012
qqqq	83.5	200	0.48	0.1	free	0.005

Table 3: Experimental assumptions for the WW event selection near threshold using a polarized scan

Fit type	Uncertainty source	$\Delta M_W \; [{ m MeV}]$	ΔM_W (syst.) [MeV]
fixbkg	Background	3.20	2.30
fixpol	Polarization	3.73	1.27
fixeff	Efficiency	3.86	1.18
fixlum	Luminosity	3.76	0.78
fixALRB	$A^B_{ m LR}$	3.86	0.80
fixall	Statistical	2.43	
	Systematic		3.10
standard	Total Error	3.94	

with 100 fb-1

WW threshold : W mass and width

With cross section $\sigma_1 \sigma_2$ measurements at two energies $E_1 E_2$: uncertainty propagation

$$\begin{cases} \sigma_1 = \sigma_{WW}(E_1, m_W, \Gamma_W) \\ \sigma_2 = \sigma_{WW}(E_2, m_W, \Gamma_W) \end{cases} \begin{cases} \Delta \sigma_1 = a_1 \Delta m + b_1 \Delta \Gamma \\ \Delta \sigma_2 = a_2 \Delta m + b_2 \Delta \Gamma \end{cases} a_1 = \frac{d\sigma_1}{dm} \qquad b_1 = \frac{d\sigma_1}{d\Gamma} \\ a_2 = \frac{d\sigma_2}{dm} \qquad b_2 = \frac{d\sigma_2}{d\Gamma} \end{cases}$$

$$\Delta m = -\frac{b_2 \Delta \sigma_1 - b_1 \Delta \sigma_2}{a_2 b_1 - a_1 b_2} \qquad \Delta \Gamma = \frac{a_2 \Delta \sigma_1 - a_1 \Delta \sigma_2}{a_2 b_1 - a_1 b_2}$$

 $\Delta m, \Delta \Gamma$ linear correlation with uncorrelated $\Delta \sigma_1, \Delta \sigma_2$

$$r = -\frac{1}{\Delta m \Delta \Gamma} \frac{a_2 b_2 \Delta \sigma_1^2 + a_1 b_1 \Delta \sigma_2^2}{(a_2 b_1 - a_1 b_2)^2}$$

WW threshold : W mass and width

Scans of possible E₁ E₂ data taking energies and luminosity fractions f (at the E₂ point)

Δm_w=0.45 MeV , ΔΓ_w=1 MeV (r=-0.6) Δm_w=0.35 MeV

Les Houches - 13 June 2023

 Δm_W , $\Delta \Gamma_W$: error on W mass and width from fitting both Δm_W : error on W mass from fitting only m_W

W mass discussion

WW threshold : energy spread effects

Maximum effects are at the level of Δm_w (stat) and $2x \Delta \Gamma_w$ (stat) so that control on the beam energy RMS <50% is required to avoid additional syst contributions from this source

arXiv:1909.12245