Tools, MC, ML and all that*

Stefan Höche, Josh McFayden, Simon Plätzer, Vinnie Mikuni

*Wiki to be updated Also consider "Les Houches" 2021: https://indico.in2p3.fr/event/24331/timetable/#20210614.detailed

Event generators

- Recent survey of the field (Snowmass 2021) [Campbell et al.] arXiv:2203.11110
 - Fixed-order calculations
 - \circ Resummation
 - Parton showers
 - Non-perturbative physics
- Many inspiring ideas
 - New experimental challenges
 - Unconventional signatures
 - Precision calculations
 - Cross-experimental aspects
 - Computing challenges

QCD Matching & Merging

- Strong focus at previous workshops, multiple comparative studies
 - Some open questions: negative weights, uncertainties from jet definitions, ...
- NNLO matching existing, but further dev needs
 - Deeper understanding of showers and underlying resummation properties
 - Fully differential matching
- Combination of different resummations
 - HEJ (high-energy resummation + PS)
 - Geneva (SCET-I or -II resummation + PS)
- Pheno studies of most uncertain simulations
 - $\circ \quad \text{Pure jets} \quad$
 - Heavy Flavor
 - Hard photons
 - ttV

Shower development & accuracy

- Benchmark comparisons between improved shower algorithms
 - Phenomenological impact
 - Full simulations vs resummation (plus had)?
 - Decisive observables Lund planes, correlators?
- Theoretical development
 - Splitting functions and partitionings
 - Formulation/derivation of algorithms, amplitude evolution
 - Next-to-leading power corrections?
- Study of subleading colour effects
 - Tools and accuracy of available calculations
 - Effective approximations?
- Interplay with hadronization
 - To what extent is perturbative accuracy sufficient?

Electroweak physics in event generators

- What can we do about QCD + QED in showers?
 - NLL accurate?
 - Initial state evolution?
- Taking stock of electroweak contributions
 - Compare different approaches: quasi-collinear, Sudakov logs, soft structure?
 - What are the needs to have a fully reliable electroweak evolution available?
 - What fixed-order studies would we need to consider?
 - \circ How do we define observables at all?
- Elephant on this slide: simulations at 100(s) TeV?
- Sudakov logs (?) and ttW?

[Plätzer, Sjödahl '21]

Comprehensive uncertainties

- Continue studies initiated at LH '17 and '19
 - Detailed study of perturbative/non-perturbative interplay
 - Shower variations and retuning
 - Impact of matching and merging
- The role of the shower cutoff
 - Theoretical meaning and interpretation
 - Practicalities in tuning and uncertainties
 - Relation to analytic hadronisation corrections
- Technical considerations
 - Interoperability of models
 - On-the-fly and branched events? Extensions of HepMC towards this?
 - Reliability of reweighting algorithms and their improvements

Comprehensive uncertainties

- Continue studies initiated at LH '17 and '19
 - Detailed study of perturbative/non-perturbative interplay
 - Shower variations and retuning
 - Impact of matching and merging
- The role of the shower cutoff
 - Theoretical meaning and interpretation
 - Practicalities in tuning and uncertainties
 - Relation to analytic hadronisation corrections
- Technical considerations
 - Interoperability of models
 - On-the-fly and branched events? Extensions of HepMC towards this?
 - Reliability of reweighting algorithms and their improvements

[ATLAS-PUB-2022-021]

Hadronization & multi-parton interactions

- How well do models extrapolate
 - Different energy ranges
 - Different observables
 - Different processes
- How much lack of perturbative ignorance are models sweeping under the carpet?
 - Do we see roads to determine this from first principles?
 - E.g. interplay colour reconnection and subleading-N improvement

[Gieseke, Kirchgaesser, Plätzer, Siodmok '18]

Specific studies

- VBS and VBF
 - Radiation patterns, jet vetoes, impact of MPI
- ttW puzzle
 - Latest NNLO prediction does not resolve tension seen in Run 2 data
 - But only looking at one (fixed) scale
 - Any more theory considerations?
 - Uncertainty recipe for experiments
- Analysis of latest heavy flavour analyses?
 - Extension of 2017 study?
 - New HF measurements available

Tool platforms & interfaces

- Availability of generator setups, versions and event samples
 - o DOI
 - Zenodo? HepData? Rucio/eos?
 - Containerisation of generators and rivet even of Les Houches analyses?
- Benchmarking/accounting
 - Better ways to assess CPU(/memory/GPU) performance of generators
 - Both standalone and the use inside experiments
- Event sample bazar shared between experiments and pheno groups
 - Possibly at intermediate steps
 - Common HDF5 structure: would this be a LHEF 4.0?
- Existing LHEF
 - What updates are needed? Additional scales?

Tool platforms & interfaces, continued

- Novel Monte Carlo methods and algorithms
 - Use of ML
 - Resampling, event sample paradigm
 - Negative-weight removal (also "resampling")
- Interfaces to matrix element providers
 - Status and use cases of BLHA are updates needed?
 - Pick up on full amplitude interfaces again? Confront with new shower paradigms.
- Modular framework for event generation?
 - Possibility to switch in/out different physics models
 - Easier platform for code optimisation?

Portability of event generators

- Multiple efforts to create vectorized code & GPU-based solutions
 - MadGraph / MadEvent
 - Pepper / Chili (formerly BlockGen)
- Community support needed
 - Currently: Proof-of-concept development within HSF & HEP-CCE
 - Long-term future depends on usage for actual science runs
 - $\circ \qquad {\rm Will \ LHC \ experiments \ commit \ to}$
 - Use portable generator technology in their workflows
 - Use heterogeneous computing resources at scale (e.g. national HPC centers)

Workforce and community development

• Situation of MCnet

- Funding ran out, but still existing as a network
- Schools and meetings continued
- Discussion of forming LHCC Generators WG

• Situation of event generators

- Project-based work typically highly sought after (excellent rewards structure)
- Support work typically badly neglected (non-existent rewards structure)
 - Technical work could be supported externally via e.g. experiments and/or software experts
 - Can be hard to make work in practise, but recent positive examples
 - MG4GPU, SWIFTHEP

HEP Software Foundation

Cross-cutting discussions and development efforts

- Several possible areas of engagement beyond LHC
 - Nuclear, Neutrino, Astro physics
 - Some of the next big HEP facilities:
 - EIC, DUNE, FPF
- Significant overlap in physics and technical expertise
 - MC tuning, HepMC, Rivet
 - DIS, nuclear structure functions, neutrino cross sections, forward charm
 - E.g. impact of FPF PDF constraints on precision (e.g. mW)?
 - E.g. forward charm and cosmic ray muon anomaly?

ML for SM: Jet Physics

Modern jet taggers are very performant and crucial to many experimental measurements

- Recent interest in explicitly enforcing symmetries, like Lorentz group equivariance, or designing algorithms with specific properties, such as Infrared and Collinear safety
- What properties do we want these algorithms to have?

- Unbinned and high dimensional unfolding enabled by ML methods using collider data already published
- Easy to unfold **functions of the data: unbiased** unfolding of the moments of distributions
- New opportunities for unfolding: Energy correlators, track functions
- What should we unfold?

ML for SM: Uncertainties

- Train your favorite classifier to be parametrized by the main uncertainties of your measurement
- Get the **best classifier** for a given value of the nuisance
- More **precise** final measurements with algorithms that account for uncertainties in the training phase
- Which measurements would benefit the most?

ML for SM: Reweighting

- Removing negative weights from MC generators
- Interpolating between different simulation parameters
 - Can also be used for Experimental design and to find the theoretical limit for the best precision on the parameter that you could extract from a sample with an ideal detector

ML for SM: Fast MC Simulation

Event Generation with Normalizing Flows

Christina Gao,¹ Stefan Höche,¹ Joshua Isaacson,¹ Claudius Krause,¹ and Holger Schulz² ¹Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA ²Department of Physics, University of Cincinnati, Cincinnati, OH 45219, USA

Unweighting multijet event generation using factorisation-aware neural networks

T. Janßen¹, D. Maître², S. Schumann¹, F. Siegert³, H. Truong²

MCNNTUNES: tuning Shower Monte Carlo generators with machine learning

Marco Lazzarin^a, Simone Alioli^b, Stefano Carrazza^a

- Accelerate theory predictions by speeding up slower calculations with hardware (GPU support) or software innovations:
 - ▷ Hadronization
 - Phase-space integration
 - Matrix-element estimation
 - ▷ Tuning

Towards a Deep Learning Model for Hadronization

Aishik Ghosh, a,b Xiangyang Ju, b Benjamin Nachman, b,c and Andrzej Siodmok d

PDFFlow: parton distribution functions on GPU

Stefano Carrazza^{a,*}, Juan M. Cruz-Martinez^a, Marco Rossi^{a,b}

ML for SM: Fast Detector Simulation

- Detector simulation becomes computationally prohibitive with current strategy
 - We need **billions** of simulated events to cover different physics processes
 - Multiple independent theory predictions to cross check different measurements
- Machine learning provides an exciting alternative for fast simulation
- What are the challenges to incorporate models inside current software?

ML for SM: Interoperability

- Inference as a service leverage remote resources and take advantage of different computing centers/cloud computing
- SONIC/TRITON

- Deployment of new algorithms within the current software framework is often not straightforward
- Needs to leverage modern hardware (when available)
- Software maintenance and reproducibility are necessary
- How about other GPU capable workflows? What is the performance gain?

ML for SM

- Modern data analysis methods and machine learning are a fundamental part of collider physics
- New and exciting opportunities to leverage the sudden increase in computational power and flexibility to extend our scientific reach
- Facilitate the communication between different research communities and promote interdisciplinarity

