

New developments in the APPLfast project

PhysTeV 2023 Workshop | École de Physique des Houches, Les Houches, France Lucas Kunz | 15/06/2023

KARLSRUHE INSTITUTE OF TECHNOLOGY

1PPL grid project

- Grids generated based on NNLOJET modules 1 as MC
 Two publications:
 - $\alpha_s(M_Z)$ fits based on HERA DIS data [1906.05303]
 - jet production at LHC (inclusive and dijet) [2207.13735]
- \Rightarrow see talk by Klaus Rabbertz (right before this one)

15/06/2023

New Interface

- Interface adapted to use modules 2 of NNLOJET
 - better colour sampling
 - full colour dijet code
 - printout of intermediate results during production step
 workflow can better detect problematic phase space points
 - more flexible decomposition of logarithmic scale coefficients
 - \Rightarrow no need for "magical numbers" in scale setup any more

<pre>muf = 1.0 * mll muf = 0.5 * mll muf = 2.0 * mll muf = 1.0 * mll muf = 1.0 * mll muf = 1.0 * mll muf = 2.0 * mll</pre>	<pre>mur = 1.0 * mll mur = 0.5 * mll mur = 2.0 * mll mur = 0.5 * mll mur = 1.0 * mll mur = 1.0 * mll mur = 1.0 * mll</pre>
muf mll muf 90.0171313005 muf 54.5981500331 muf 148.4313591026 muf 54.5981560331 muf 54.7981560331 muf 148.4313501026 muf 90.0171313005 muf 148.4313591026	mur mll mur 90.0171313005 mur 54.5981500331 mur 148.4131591026 mur 90.0171313005 mur 54.5981500331 mur 90.0171313005

15/06/2023

Lucas Kunz - New developments in the APPLfast project

Dijet full colour

• Two different dijet full colour data sets produced for testing:

- CMS at 7 TeV, anti-kt, R=0.6
- double differential in $m_{12} \in [260.0, 5040.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- ATLAS at 13 TeV, anti-kt, R=0.4
- double differential in $m_{12} \in [260.0, 9066.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- lacksquare \Rightarrow plots shown on the following slides

Dijet full colour

• Two different dijet full colour data sets produced for testing:

- CMS at 7 TeV, anti-kt, R=0.6
- double differential in $m_{12} \in [260.0, 5040.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- ATLAS at 13 TeV, anti-kt, R=0.4
- double differential in $m_{12} \in [260.0, 9066.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- lacksquare \Rightarrow plots shown on the following slides

Old Interface o	New Interface	Dijet full colour ●0000000	Outlook o
Lucas Kunz - New developm	ents in the APPLfast project	15/06/2023	4/12

Dijet full colour

Two different dijet full colour data sets produced for testing:

- CMS at 7 TeV, anti-kt, R=0.6
- double differential in $m_{12} \in [260.0, 5040.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- ATLAS at 13 TeV, anti-kt, R=0.4
- double differential in $m_{12} \in [260.0, 9066.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- $\blacksquare \Rightarrow$ plots shown on the following slides

Dijet full colour - channels

Plot of relative contributions of different channels shows large cancellations between real and virtual parts for higher y^*

Old Interface o	New Interface O	Dijet full colour		Outlook o
Lucas Kunz - New developments in the A	PPLfast project		15/06/2023	5/12

Dijet full colour - closure

Overall we find good closure at sub-permille accuracy

Old Interface o	New Interface	Dijet full colour ○○●○○○○○	Outlook o
Lucas Kunz – New developm	ents in the APPLfast project	15/06/2023	6/12

Dijet full colour - closure

Even the most problematic channels (double real) show nice behaviour

Old Interface	New Interface	Dijet full colour	Outlook
O		○○○●○○○○	o
Lucas Kunz – New develop	ments in the APPLfast project	15/06/2023	7/12

	<mark>Event</mark>	<mark>Jobs</mark>	<mark>neval</mark>	<mark>Tot Time</mark>	Cross section	<mark>Error</mark>
LO	0.5*10 ⁹	27*8	108*10 ⁹	4.7 *10³h	5.249331E+08	1.315478E+04
V	8*10 ⁶	28*8	1.792* 10 ⁹	3.6 *10³h	4.089646E+08	1.072727E+05
R	4*10 ⁶	84*8	5.088 *10 ⁹	22.9*10 ³ h	-3.296991E+08	2.205647E+05
	10 *106					
vv	15*10 ⁶	55*8	6.006 *10 ⁹	4.8 *10³h	2.200059E+08	7.435571E+04
RV	0.67*10 ⁶	100*8	1.1952*10 ⁹	41.6*10 ³ h	-3.385389E+08	8.122503E+05
	1.7*10 ⁶	1				
RRa	0.69*10 ⁶	300*8	1.656 *10 ⁹	116*10³h	5.278204E+07	2.521830E+06
RRb	3.75*10 ⁶	81*8	3.436 *10 ⁹	19 *10³h	2.386325E+07	1.117482E+06
	11.2*106					

	LO	NLO	NLO_only	NNLO	NNLO_only	
Number of evaluations	108*10 ⁹	~114.9 *109	~6.9*10 ⁹	~127.2 *10 ⁹	~12.3*109	
Cross-section	5.249331E+08	6.041986E+08	7.926550E+07	5.623109E+08	-4.188771E+07	
error	1.315478E+04	4.835966E+05	2.452676E+05	2.886867E+06	2.876399E+06	
nterface	New I	nterface	Dije	et full colour 00€000	(Outlo

Lucas Kunz - New developments in the APPLfast project

Old

T	D (1) 1 (5010	1 1 1 1 0 0 10
TABLE 1.1:	Profiling data	for NNLOJET	rev5918,	nnlo-bridge v0.0.40

Subprocess	Runtime [s]	Incl. bridg	e + fastNLO [s]	Incl. fas	tNLO [s]	
LO	0.658	0.086	13.01%	0.053	7.98%	
V	2.383	0.621	26.08%	0.535	22.46%	
R	6.259	2.536	40.52%	1.950	31.15%	
NLO	9.300	3.243	34.87%	2.538	27.29%	
VV	6.999	0.379	5.42%	0.327	4.67%	
RV	57.732	5.912	10.24%	4.624	8.01%	
RRa	114.915	40.565	35.30%	31.452	27.37%	
RRb	114.430	40.256	35.18%	32.395	28.31%	
NNLO	303.376	90.355	29.78%	71.336	23.51%	

TABLE 1.2: Profiling data for NNLOJET rev6591, nnlo-bridge v0.0.46

	Subprocess	Runtime [s]	Incl. brid	ge + fastNLO [s]	Incl. fa	stNLO [s]		
	LO	0.696	0.092	13.20%	0.062	8.91%		
	V	2.154	0.124	5.77%	0.082	3.83%		
	R	12.407	1.040	8.38%	0.605	4.88%		
	NLO	15.257	1.256	8.23%	0.749	4.91%		
	VV	9.710	0.201	2.07%	0.142	1.46%		
	RV	180.825	4.014	2.22%	2.387	1.32%		
	RRa	159.221	4.188	2.63%	2.341	1.47%		
	RRb	183.860	5.993	3.26%	3.659	1.99%		
	NNLO	548.873	15.652	2.85%	9.278	1.69%		
Old Interface o		New Interfa	ice		Dijet full o	colour 00		Outlook
Lucas Kunz - New developments in the APPLfast project 15/06/2023							15/06/2023	9/12

Subprocess	Runtime [s]	Incl. bridg	ge + fastNLO [s]	Incl. fas	tNLO [s]
LO	0.696	0.092	13.20%	0.062	8.91%
V	2.154	0.124	5.77%	0.082	3.83%
R	12.407	1.040	8.38%	0.605	4.88%
NLO	15.257	1.256	8.23%	0.749	4.91%
VV	9.710	0.201	2.07%	0.142	1.46%
RV	180.825	4.014	2.22%	2.387	1.32%
RRa	159.221	4.188	2.63%	2.341	1.47%
RRb	183.860	5.993	3.26%	3.659	1.99%
NNLO	548.873	15.652	2.85%	9.278	1.69%

Subprocess	Runtime [s]	Incl. bridg	ge + fastNLO [s]	Incl. fas	tNLO [s]
LO	0.730	0.096	13.16%	0.065	8.88%
V	2.157	0.124	5.76%	0.082	3.82%
R	12.359	0.597	4.83%	0.582	4.71%
NLO	15.246	0.817	5.36%	0.729	4.78%
VV	20.731	0.369	1.78%	0.251	1.21%
RV	1700.880	13.607	0.80%	7.994	0.47%
RRa	672.888	17.629	2.62%	9.689	1.44%
RRb	696.900	22.719	3.26%	14.008	2.01%
NNLO	3105.745	55.141	1.78%	32.671	1.05%

leading colour

full colour

Subprocess	Runtime [s]	Incl. bridge + fastNLO [s]		Incl. fastNLO [s]	
LO	0.676	0.010	1.52%	0.010	1.00%
V	0.691	0.021	2.99%	0.014	2.01%
R	0.971	0.068	7.04%	0.040	4.12%
NLO	2.338	0.099	4.23%	0.064	2.74%
VV	1.084	0.017	1.55%	0.011	1.06%
RV	10.086	0.179	1.77%	0.103	1.02%
RRa	14.809	0.244	1.65%	0.144	0.97%
RRb	15.282	0.319	2.09%	0.192	1.26%
NNLO	43.599	0.858	1.97%	0.514	1.18%

full colour with optimised colour sampling

Lucas Kunz - New developments in the APPLfast project

- bridge and fastNLO make up negligible amount of runtime (\sim 1%)
- overall @ NNLO: FC with optimisation < LC < FC</p>
- better momentum caching in NNLOJET brought additional speedup:
 - 24% for LC
 - 11% for FC
 - 18% for FC with optimised colour sampling
- lacksquare \Rightarrow ready for mass production in reasonable time

Next steps

finalize validation of NNLO code

- optimize workflow and runtime
- make sure closure works in all channels
- reproduce results in [2207.13735]
- calculate dijet differential distributions at full colour
- $\alpha_s(M_Z)$ determination from LHC data
- provide setup for further developments and calculations

Thank you for your attention!