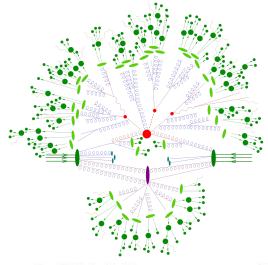
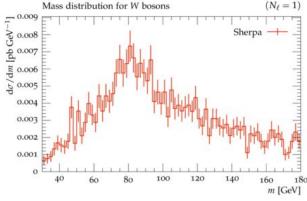
Tools, MC, ML and all that

Stefan Höche, Josh McFayden, Simon Plätzer, Vinnie Mikuni

Main topics


- Shower accuracy and uncertainties
 - New NLL showers
 - Role of hadronization
 - Extrapolation into new observables:
 - Significant collaboration with JSS and heavy flavour initiatives
- Taking stock of EW algorithms
- Interfaces and accords
- Computing and MC algorithms, reweighting

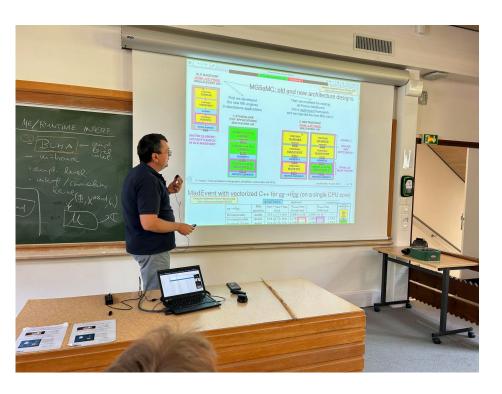


Making collaboration easier

- Containerisation and reproducibility
 - Docker images, run cards, Rivet routines,
 Yoda files → HepData
 - Use these tools to make LH studies reproducible
 - Can at Docker-based workflow on e.g. lxplus be documented to lower barrier to entry for MC studies ← In progress
 - Make sure cards actually used by EXP are uploaded with TH prediction Yoda files.
 - Make available for benchmarking (c.f. point 2.), including full chain in EXP
- MC generation generic tool / interface
 - o Can we revive MCPlots?

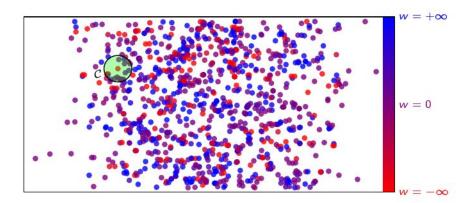
Attacking the computing bottlenecks: Parallelization

GPU/Vectorisation/HPC

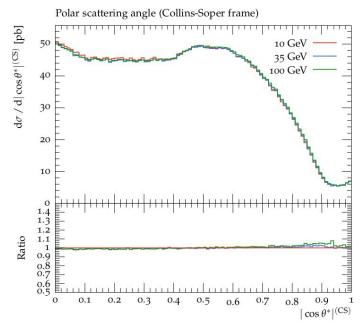

- Experience porting codes
- Workflows in experiments
 - How would code be run in practise
 - How to get/confirm allocations
 - Sharing of resources between EXP and TH
- Plan for benchmarking MG4GPU and Chili/Pepper

Computing performance

- Benchmarking current code
 - Also with examples from EXP
- Accounting in experiments
- Projections for future N(2,3)LO calculations

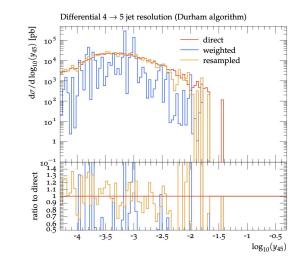

Updates to interfaces

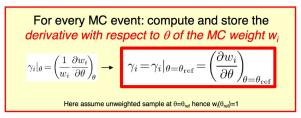
- Interoperability of models
- Modular framework
- Multi-event API in MC generators
 - Would help for e.g. Reweighting tools



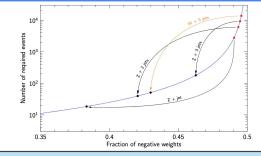
Attacking the computing bottleneck: Reweighting

- Reweighting and derivative-based optimisation
- Reweighting to eliminate negative weights
 - NN and cell-based tools
 - Stress tests of these tools?
 - Problem areas from TH PoV
 - Validation at scale in EXP
- Usage of resampled events in particle-level simulation
- Recommendation:: Don't unweight before reweighting



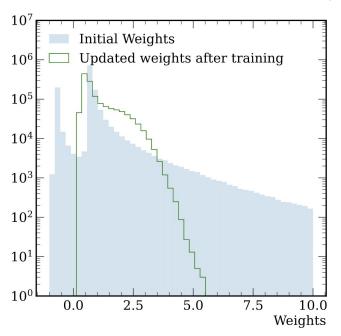


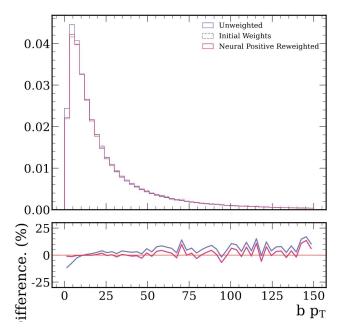
ML for SM: Weights


Olsson, Plätzer, Sjödahl – Eur.Phys.J.C 80 (2020) 10, 934

- 2 sessions on event weights and related topics:
 - Andrea Valassi: Regressing the weight derivatives
 - Jeppe: Mitigating negative weights
 - Mathieu: Regressing ME ratios for polarization studies
- Questions raised:
 - What can we reweight **reliably** and when do we need other methods?
 - How to ensure the correct statistical properties: physics observables are unchanged, statistical uncertainty is estimated correctly.

I argue that this is the most important MC-truth property of an event in a fit for θ




Cell resampling drastically reduces the number of required events

ML for SM: Weights

- Working with Jeppe to compare different methods for negative weight reduction
 - Preliminary results using ttbb + first emission at parton level sample produced by Maria
 - ldentify distributions that are **difficult to reweight**, expand to other reweighting studies
 - Ensure the **statistical uncertainty** is correctly estimated after modifying the weights

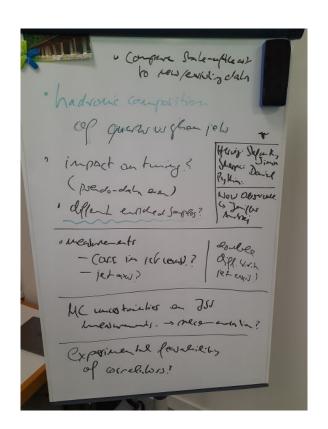

Preliminary plots from the ML side

More systematic parton shower uncertainties

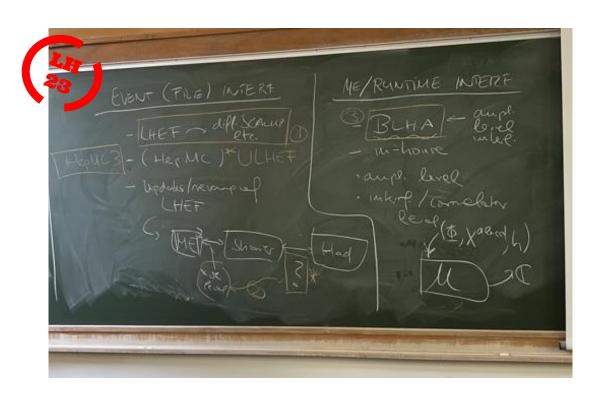
- Short term / Mid term / Long term goals
- Summary and recommendation document for jets (<u>overleaf</u>), but conclusions valid for a wider set of processes

Shower variations and hadronization

- Retuning, IR cutoff and all that
 - Theoretically more sound update of LH'17 study in planning
- Cluster and string like settings, global tune benchmark?
- A consensus that the right way to build an uncertainty model is to:
 - Change parton shower and hadronisation models
 - Take all combinations available
 - Tune consistently
 - In one generator
 - Shower A + Hadronisation X
 - Shower A + Hadronisation Y
 - Shower B + Hadronisation X
 - Shower B + Hadronisation Y

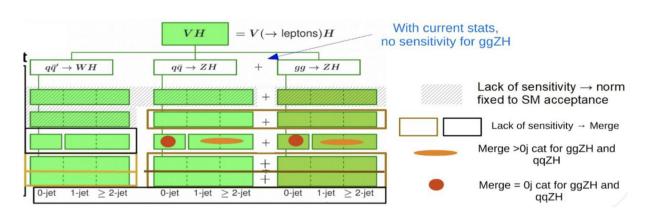


Jet substructure, correlations and all that


- Better understanding of shower accuracy and hadronization models call for new observables
- JSS particularly interesting, as well as correlations
- Comparison to existing and exploration of new studies
- Questions to be addressed:
 - Sensitivity to hadronization
 - Impact of MPI
 - Impact of new showers
- Big study in preparation

Accords & interfaces: Event formats

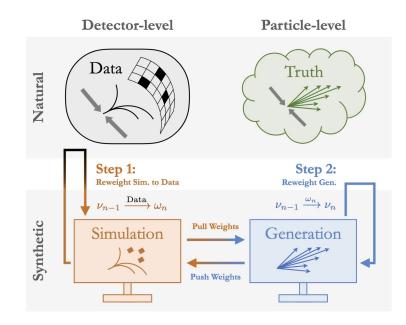
- New HDF5 standard ← LHEF/HepMC
 - Easier event sharing, smaller disk footprint
- Need for more information in intermediate stages of generation?
- Sample sharing between experiments
 - Joint/cross validation
- Publicly available theory calculations
- Amplitude-level interfaces
 - New shower paradigms
 - Higher orders beyond NLO QCD



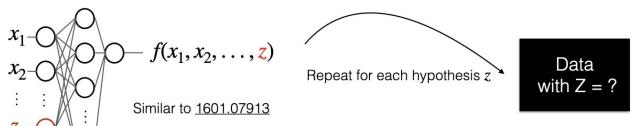
ML for SM: Unfolding

- Dedicated unfolding session on Thursday
- Discussions to identify new use cases and opportunities
- Higgs applications: Unfolding of processes where the current STXS binning is too aggressive. Possible
 to define categories after unfolding or even create new categories based on unfolded variables
 - ▶ Challenges: Negative weights, non-negligible backgrounds, low signal yield
 - More studies to come with Mauro, Philippe, and Karsten

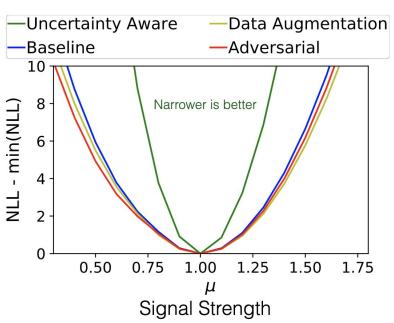
STXS for Run3


v1.2 too aggressive binning (required merging bins for lack of sensitivity)

More in the Higgs summary


ML for SM: Unfolding

- Discussion of feasibility of unfolding energy correlators
 - Constituent level unfolding needed to preserve the information necessary to calculate the EECs
 - Similar strategy partially developed in the context of H1 data to unfold generalized jet angularities
 - Interesting to think more about the feasibility and comparison with standard unfolding methods



More in the Jet-substructure techniques summary

ML for SM: Experimental Uncertainties

- Talk from Aishik on including experimental uncertainties in the machine learning training
- Requires continuous parametrization of the observables as a function of the uncertainty source
- How much do we trust our uncertainties?

How to cooperate after Les Houches

Work has only begun!

How to cooperate after Les Houches

How to cooperate after Les Houches

