It Università di Genova

Jet Flavour summary

Les Houches 2023

Simone Marzani \& Andreas Hinzmann

Soft Drop Flavour (SDF)

- Safe at NNLO with Jade reclustering (but not beyond)
- Only looks at information in the original anti-kt jet
- SD only used for flavour determination, no change in the jet kinematics

Flavour anti-kt (CMP)

Proposed modification:
A soft term designed to modify the distance of flavoured pairs.

$$
d_{i j}^{(F)}=d_{i j}\left\{\begin{array}{lc}
\mathcal{S}_{i j} & \mathrm{i}, \mathrm{j} \text { is flavoured pair } \\
1 & \text { else }
\end{array}\right.
$$

$$
\mathcal{S}_{i j} \equiv 1-\theta\left(1-\kappa_{i j}\right) \cos \left(\frac{\pi}{2} \kappa_{i j}\right) \quad \text { with } \quad \kappa_{i j} \equiv \frac{1}{a} \frac{k_{T, i}^{2}+k_{T, j}^{2}}{2 k_{T, \max }^{2}} .
$$

- New jet algorithm to cluster together flavoured pairs first
- Small deviations from anti-kt kinematics
- IRC sensitivity beyond NNLO can be fixed using a modified metric*

$$
\mathcal{S}_{i j} \rightarrow \overline{\mathcal{S}}_{i j}=\mathcal{S}_{i j} \frac{\Omega_{i j}^{2}}{\Delta R_{i j}^{2}} \quad \Omega_{i k}^{2} \equiv 2\left[\frac{1}{\omega^{2}}\left(\cosh \left(\omega \Delta y_{i k}\right)-1\right)-\left(\cos \Delta \phi_{i k}-1\right)\right]
$$

Flavour Dressing (GHS)

- start with a set of flavour agnostic jets $\{\mathrm{jk}\}$
- define flavoured clusters in the event $\left\{\mathrm{f}_{\mathrm{i}}\right\}$
- associate flavour clusters to jet (association criterion)
- determine the total flavour of a jet (accumulation criterion):
- algorithm only used to assign a flavour label, no kinematic modifications
- potential IRC sensitivity with many hard partons and 2 soft emissions*
* see [2306.07314]

Gauld, Huss, Stagnitto [2208.11138]

FIG. 20. Example $\mathcal{O}\left(\alpha_{s}^{2}\right)$ configuration that yields an issue for the GHS algorithm. There are four hard particles (that one can imagine recoiling against a hard gluon or electroweak system on the other side of the event), a collinear emission of a hard gluon g from one of the flavoured particles (the q), which then splits collinearly to a flavoured pair $q^{\prime} \bar{q}^{\prime}$.

Interleaved Flavour Neutralisation (IFN)

neutralise $=$ remove the (opposite) flavour of both 1 \& 2 while maintaining kinematics

- BONUS: framework to numerically determine IRC sensitivities at higher orders

Flavours at Les Houches

- A common framework for the 4 algorithms was created and made public https://github.com/jetflav
- First stepping stone towards detailed comparisons

1. Comparisons in NNLO calculations (at parton level)
2. Comparison with LO + parton shower and, eventually, NLO + parton shower, with and without hadronisation corrections
3. Training machine-learning based b-taggers on jets with different b -labels and compare performances with standard anti-kt

NNLO studies: Z+b jet (R=0.5)

- all new algorithms are IRC safe at this order (anti-kt is not!) and in reasonable agreement
- CMP and SDF behaves very similarly but they differ wrt GHS/IFN by a few percent

NNLO studies: WH(bb)

- with both massless and massive b quarks

LO-PS (Pythia parton level)

- CMS 8 TeV analysis but identifying strange quarks rather than b's to highlight differences

CMS, 8 TeV , Leading b jet transverse momentum, at least one b jet

- For inclusive η, p_{T} distributions only CMP shows a tiny deviation from anti-kt kinematics (baseline)
- For $\eta_{s}, p_{T s}$ distributions IRC sensitivity of SDF at higher order becomes visibile, while the other 3 algorithms behave similarly
- It would be interesting to see hadronisation corrections to this picture
thanks Silvia! ... even if it's not your favourite shower...

LO-PS (Pythia hadron level)

- first hadron-level studies show larger differences... something to investigate further

LO-PS (Herwig parton \& hadron level)

- First step to understand the behaviour of these algorithms on hadrons
- longer runs are needed to draw conclusions
- it would be interesting to also see correlations plots
thanks to Andrzej \& the Herwig team!

Lessons learnt and future plans

- First fixed-order studies here at Les Houches show are reassuring: the algorithms behave as expected
- When we add parton shower and hadronisation the picture changes but we haven't reached a full understanding yet
- It's important to make these comparison more detailed and consistent (all stages of the simulation for each MC generator)
- This will allows us to understand better the use of b-labelled jets as input for ML training and for data/theory comparisons
- We don't always want the same thing (e.g. the discussion we had about double btagging) but it's important to record any useful information
- We have an overleaf document https://www.overleaf.com/project/ 648ab3e1c164ede47c68c368
- We will setup a mailing list for those of you interested in follow-up studies

Thanks everyone for the great work!

