Towards NNPDF aN3LO PDFs with theory uncertainties

Giacomo Magni, Nikhef Theory Group and VU Amsterdam

> Les Houches 2023, 16 June 2023

R.D.Ball, A.Barontini, A.Candido, S.Carrazza, J.Cruz-Martinez, L.D.Debbio, S.Forte,

In collaboration with:

How can we improve theory accuracy of NNPDF4.0?

NNPDF4.0 PDFs are still at NNLO accuracy in QCD, need to go aN3LO.

➡ Inclusion of theory uncertainties while determining PDFs is relevant at this level of accuracy.

How can we improve theory accuracy of NNPDF4.0?

- NNPDF4.0 PDFs are still at NNLO accuracy in QCD, need to go aN3LO.
- → Inclusion of theory uncertainties while determining PDFs is relevant at this level of accuracy.

Theory uncertainties from scale variations

General formalism how to introduce theory uncertainties in PDFs have been addressed in various studies:

MSTH [arxiv:1811.08434], NNPDF [arxiv:1906.10698], [arxiv:2105.05114]

$$Cov = Cov_{Exp} + Cov_{Th}$$

- Scale Variations are not a unique procedure. There are many different schemes that can be used to compute MHOU.
- Factorization scale variations are introduced during the DGLAP evolution.
- **Renormalization scale variations** are retained inside the coefficient functions and varied differently for different kind of processes.
- The way in which μ_f, μ_r are varied simultaneously define a so called point prescription.

Exp + MHOU correlations **NNLO**

MHOU correlations **NNLO**

Impact of MHOU theory uncertainties

- μ_f/Q , μ_r/Q are varied in the range [0.5, 1, 2]
- ► 9 point prescription used.
- Effects on the PDF fit are non-trivial.

w/o Theory Uncertainties

- Theory uncertainties add correlations between datasets, which are not taken into account in the experimental covariance mat.
- Reduction of χ^2/N_{dat} : 1.21 \rightarrow 1.19
- Improvement in the perturbative convergence.

with Theory Uncertainties

PDFs determination @ aN3LO

Several theoretical inputs are needed in a PDF fit:

- The main ingredient are the QCD splitting functions which controls the DGLAP evolution.
- VFNS matching conditions for each running component.
- DIS partonic coefficients functions, accounting for massive corrections when possible.
- Hadronic coefficients: which can be included mainly through *k-factors*.

6

PDFs determination @ aN3LO

Several theoretical inputs are needed in a PDF fit:

- The main ingredient are the QCD splitting function which controls the DGLAP evolution.
- VFNS matching conditions for each running component.
- DIS partonic coefficients functions, accounting for massive corrections when possible.
- Hadronic coefficients: which can be included main through *k-factors*.

Not all of them are yet available at N3LO

ons	 Construct reliable approximations from existing calculations.
	Determine theory uncertainties both from:
٥r	Incomplete Higher Order corrections IHOU
nly	Missing Higher Order corrections MHOU
-	

PDF evolution @ aN3LO **Splitting functions**

- available yet.
- complex.
- Non Singlet splitting functions can be estimated with quite precise accuracy for phenomenological studies:
- Moch, Ruijl, Ueda, Vermaseren, Vogt [arXiv:1707.08315]; Davies, Vogt, Ruijl, Ueda, Vermaseren [arXiv:1610.07477]; Davies, Kom, Moch, Vogt [arXiv:2202.10362].

Analytical calculations of the complete N3LO spitting functions are not

At N3LO there are 7 different splitting functions to determine.

Ideally would like to have a fast parametrisation, analytical structure too

- Singlet splitting functions are more challenging and can be determined only with a finite accuracy.
- Large-n_f limit: Davies, Vogt, Ruijl, Ueda, and Vermaseren. [arXiv:1610.07477]
- **Small-x limit:** Bonvini and Marzani [arXiv:1805.06460]; Davies, Kom, Moch, Vogt. [arXiv:2202.10362]
- Large-x limit: Duhr, Mistlberger, Vita [arXiv:2205.04493]; Henn, Korchemsky, Mistlberger [arXiv:1911.10174]; Soar, Moch, Vermaseren, Vogt [arXiv:0912.0369].
- Mellin Moments: Moch, Ruijl, Ueda, Vermaseren, and Vogt[arXiv:2111.15561]; Falcioni, Herzog, Loch, Vogt [arXiv:2302.07593]

PDF evolution @ aN3LO Splitting functions

The approximation procedure is performed in Mellin space for each n_f part independently:

- Parametrise the difference between the 4 (10) known moments and known limits with 4 functions $f_i(N)$.
- Varying the sub-leading unknown $f_i(N)$ to produce a large 2. set of parameterisation candidates (≈ 70).
- Reduce the number of samples discarding too wiggly parameterisations and looking at the most representative 3. cases.

For example in $P_{gg}(x)$:

- 1. Theoretical constraint include:
 - large-N:

$$\gamma_{gg}^{(3)}(N \to \infty) \approx A_{gg}S_1(N) + B_{gg} + \mathcal{O}\left(\frac{\ln(N)}{N}\right)$$

- small-N pole at N = 0, and N = 1 (leading contribution):

$$\gamma_{gg}^{(3)}(N \to 1) \approx C_4 \frac{1}{(N-1)^4} + C_3 \frac{1}{(N-1)^3} + \mathcal{O}\Big(\frac{1}{(N-1)^2}$$

 $\tilde{f}(N) =$

Rule of thumb: small- $N \rightarrow$ small-x, large- $N \rightarrow large-x$

For more details see **EKO N3LO documentation**

2. Solve the constraint given by the 4 known Mellin moments with many different candidates $\{f_1, f_2, f_3, f_4\}$:

$$f_{1} = \frac{S_{1}(N)}{N} \qquad f_{3} = \left\{ \frac{1}{(N-1)}, \frac{1}{N} \right\}$$

$$f_{4} = \left\{ \frac{1}{(N-1)}, \frac{1}{N^{4}}, \frac{1}{N^{3}}, \frac{1}{N^{2}}, \frac{1}{N}, \frac{1}{(N+1)^{3}}, \frac{1}{(N+1)^{2}}, \frac{1}{(N+1)^{2}}, \frac{1}{N+1}, \frac{1}{N+2}, \mathcal{M}[\ln(1-x)], \mathcal{M}[(1-x)\ln(1-x)] \right\}$$

PDF evolution @ aN3L0 Splitting functions

- Large logs $1/x \ln^3(x)$, $1/x \ln^2(x)$ arise at N3LO.
- ► NNLO MHOU are not enough in small-x region.
- IHOU are not negligible. Having 10/20 moments available would be enough to reduce IHOU.
- Off diagonal terms P_{qg} , P_{gq} are more difficult to estimate (large-N goes to 0).

Comparison with MSHT

MSHTaN3LO: [arxiv:2207.04739]

Splitting functions small-x

4 Mellin Moments only

 $xP_{qq}(x), \ \alpha_s = 0.2 \ n_f = 4$

10 Mellin Moments

 $xP_{qq}(x), \ \alpha_s = 0.2 \ n_f = 4$

DIS @ aN3LO Structure Functions

DIS structure functions are known at N3LO in the massless limit for F_2, F_L, F_3 :

- DIS NC: Larin, Nogueira, Van Ritbergen, Vermaseren
 [arxiv:9605317] Moch, Vermaseren, Vogt [arxiv:0411112],
 [arxiv:0504242]
- DIS CC: Davies, Moch, Vermaseren, Vogt [arxiv:0812.4168]
 [arxiv:1606.08907]

DIS Heavy structure functions can be parametrised joining the known limits $(Q \rightarrow m_h^2 \text{ and } Q \gg m_h^2)$ with some damping functions.

$$C_{g,h}^{3} = C_{g,h}^{(3,0)} + C_{g,h}^{(3,1)} \log(\frac{\mu}{m}) + C_{g,h}^{(3,2)} \log^{2}(\frac{\mu}{m})$$
$$C_{g,h}^{(3,0)} = C_{g,h}^{thr}(z, \frac{m_{h}}{Q})f_{1}(z) + C_{g,h}^{asy}(z, \frac{m_{h}}{Q})f_{2}(z)$$

Kawamura, Lo Presti, Moch, Vogt [arxiv:1205.5727]

NNLO check

From N. Laurenti

aN3LO

DIS @ aN3LO Variable Flavor Number Scheme

During a PDF fit all these contributions needs to be joined together using a proper Variable Flavor Number Scheme

PDFs matching conditions are now available at

N3LO almost completely, with the exception of $a_{H,g}^{(3)}$: Bierenbaum,

Blümlein, Klein [arXiv:0904.3563] Ablinger, Behring, Blümlein, De Freitas, Hasselhuhn, von Manteuffel, Round, Schneider, Wißbrock. [arXiv:1406.4654]; Ablinger, Behring,
Blümlein, De Freitas, Goedicke, von Manteuffel, Schneider Schonwald [arXiv:2211.0546].
(Other works see slide 24)

DIS structure functions are computed in the **FONLL** procedure [arxiv:1001.2312]:

- Up to N3LO for the Heavy structure functions F_{heavy}
- Up to NNLO for F_{light} + Massless N3LO contributions.

$$\begin{pmatrix} g \\ \Sigma^{(n_f)} \\ h^+ \end{pmatrix}^{n_f+1} (\mu_h^2) = \mathbf{A}_{S,h^+}^{(n_f)}(\mu_h^2) \begin{pmatrix} g \\ \Sigma^{(n_f)} \\ h^+ \end{pmatrix}^{n_f} (\mu_h^2)$$

	_			
 _		 -	-	

Preliminary aN3LO PDFs fits

What do we include in a global aN3LO ?

- VFNS Evolution at aN3LO for all datasets with IHOU.
- DIS dataset for CC and NC, with IHOU for massive calculations.
- Hadronic dataset all at NNLO with some K-factors for DY inclusive and rapidity distributions (not done yet)
- Datasets which do not contain aN3LO are included only if MHOU are considered.

Impact of IHOU theory uncertainties

- Construct a theory covariance matrix by varying one single splitting function (during the DGLAP evolution) at the time.
- Variations in the heavy DIS coefficients functions are also taken into account.
- Produce an ≈ 70 point prescription theory covariance assuming that each variation is not correlated to the others.
- This source of uncertainty can added to the MHOU theory covariance mat obtained with scale variations:

$$Cov_{th} = Cov_{MHOU} + Cov_{MHOU}$$

Exp correlations

Exp + IHOU correlations **aN3LO**

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
-1.00

Preliminary aN3LO PDFs fits

- First runs of aN3LO fits show a quite visible impact of N3LO corrections in the small-x region for gluon g and Singlet Σ .
- At large-x PDFs are compatible within one sigma with NNLO.
- Theory uncertainties reduce tensions with NNLO pdfs also in the small-x region.

w/o Theory Uncertainties

Preliminary aN3LO PDFs fits

- Approximate N3LO PDFs determination must take into account that not all the contributions are not fully available.
- Theory uncertainties do have different pattern from experimental ones.
- For an aN3LO we need to estimate both IHOU and MHOU.

From our preliminary results...

- Theory uncertainties have a visible impact on PDFs fits.
- First aN3LO results do not show large tensions with NNLO, especially if theory uncertainties are taken into account

TODO list

- Inclusion of N3LO for DY rapidity distributions.
- What about N3LO in DY pT distribution ?
- And single *t* and $t\bar{t}$?
- Can we benchmark our aN3LO inputs and eventually PDFs with MSHT?

Backup slides

Pineline

A new tool chain for PDFs theory predictions

The code infrastructure needed to compute theory predictions has been completely rewritten and is now fully **open source**

One program, one job.

Easier to maintain. Mainly python written. Open-source

https://nnpdf.github.io/pineline/

https://github.com/NNPDF

Barontini, Candido, Cruz-Martinez, Hekhorn, Schwan [arxiv:2302.12124]

1. A possible way to validate the procedure is to **reproduce** the known NNLO singlet splitting functions using the very similar constrain that we have right now on the N3LO ones.

Splitting functions small-x $xP_{gq}(x), \alpha_s = 0.201 n_f = 5$

24

Splitting functions large-x

 $xP_{gg}(x), \ \alpha_s = 0.201 \ n_f = 5$

PRELIMINARY RESULTS

Comparison with MSHT large-x $_{xP_{gg}(x), \alpha_s = 0.2 n_f = 4}$

