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Results from the poll

Option A

15 votes 0 vote(s)

2 — Option &



#sm-wishlist

Standard Model Precision Wishlist

e Many new calculations completed in the past two years
o 2—8/2—9 @ NLO EW/QCD
o 2—2 @ NNLO beyond “standard” (QCD-EW, masses, flavour, fragmentation, ...)
o 2—3 @ NNLO QCD
o 2—1@N3LOQCD
e Already new predictions requested (+ exp motivation)
e Extend beyond hadron—hadron collider processes?
o DIS (EIC); future lepton—lepton colliders; would rely on input from the community!

e Already includes a brief review on current calculational techniques
o Do we want a similar short review on the state of the art in
resummation & PS accuracy & power corrections & ...?7

e Please post your new calculations / requests on #sm-wishlist !
(this is very much appreciated...) 3



#ew-uncertainties

Uncertainties for EW corrections (I)

Idea: propose & document a set of prescriptions to estimate EW uncertainties

e scheme variation for the full phase space: a(Gu) vs. a(Mz)
o Similar to scale variation in QCD; appropriate for non-enhanced EW corrections

e Sudakov logarithms in high-energy tails exponentiate
O AS ~ (JEW )2
ud — \YNLO
o More refined: first isolate the Sudakov logs from the full NLO EW corrections
e QED FSR corrections close to resonances / shoulders

o Large corrections mainly from kinematics
o Difference (resummed photons) — (NLO EW)

e Mixed QCD-EW corrections
o Lv. O: Difference (NLO QCD + NLO EW) — (NLO QCD x NLO EW)
o Lv. 1: Difference (fragmentation function |-A, j—>A on NLO QCD) — (NLO QCD x NLO EW)
o Lv. 2: Difference (resummed photons on NLO QCD) — (NLO QCD x NLO EW)
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Maybe not a one-size-fits-all procedure but hopefully a useful set of pre-
scriptions to estimate various aspects of theory uncertainties associated with
electroweak corrections. If we have enough time, we could see if these ideas
can be applied to a concrete example like Drell-Yan produciton at the LHC.
This would be a process that exposes almost all of the subtleties that will be
discussed in this document.

1 Introduction

Typically electroweak parameters are renormalized in a scheme that does not retain a
dependence on an unphysical scale, like 1 in the MS scheme. Moreover, the choice of a
scheme is often well motivated, e.g. the coupling associated with Born-level photons are
most appropriately renormalized in the ag scheme to avoid sensitivity to large logarithms
of fermion masses in the final result or the choice of ag, in the W-boson couplings
absorbs universal higher-order corrections to the p parameter into the coupling definition.
See for instance the review in Ref. [1] for further details on EW input schemes. As
such, an appropriate prescription of estimating higher-order EW corrections becomes
much more subtle as naive approaches could potentially overestimate uncertainties by
a large amount. This document attempts to highlight the subtleties in estimating such
uncertainties and provides prescriptions (of different levels of sophistication) that can be
applied to theory predictions.




#flavoured-jets

Jet flavour study (1)

Four flavour-tagging algorithms for anti-kt
jets presented during the workshop
(check wiki programme for slides).

Popular repositories

Implementations as fastJet plugins
available at:
https:/aithub.com/jetflav

Various studies identified based on
fixed-order and NLO+PS predictions

— jet substructure & Higgs summaries


https://phystev.cnrs.fr/wiki/2023:programme
https://github.com/jetflav

#flavoured

Jet flavour study (lIl) e Z+bjet @ NNLO QCD

using different algorithms

-jets

% LHC 13 TeV PDF: NNPDF31 |> © Results compatible with each other but
5 1071 Scale: pup = pp = mT(Z) § differences at the %-level
B Order: NNLO é o Unfo_ldmg corrections to exp. flavour
=) = tagging?
—
~ 9]
< 10 ] = CMS, 8 TeV, Z boson pt, at least one b jet
bt L M— CMPQ a= 0‘2 % E T T { T T 7T | T T 71 { T T T LOPS IALGQAKT}E
& 3 FJ SoftDrop ¢ —+— LOPS [ALG=CMP]
3 1073 FJ GHS = L —— LOPS [ALG=CONE]
o | wm— FJ [FN S, LOPS [ALG=GHS]
= — ; . | . ! TOOE —+— LOPS [ALG=IFN] -
o~ i 3 F -+ - LOPS [ALG=0TAG]
S 106 E C -+ - LOPS [ALG=SDF]-
Il 1.04 g r -+~ LOPS [ALG=TAG]
S ™ 1073 E
c 1.02 =88 8 E 4 ]
% 1.0 oo el - i S
O - —| ! ! ‘ | 1 ! 1 | ! ! 1 ‘ Il ! | ‘ 1 ! ! 1 ‘ ! ! ] ! L
00.98 101':;711 T L B Y{TIIIWIIIIE
= 13 E- i
o 0.96 - 12 £ . P B S h S
b= § VIR e T =
S 0.94 1 5 o e ey E‘E' =
T T T T T T 0.8 é
50 100 150 200 250 300 07 =
gg =1 1 | l IR TR A 1 ] RN B AR E 7
pT(bl) [GeV] o 50 100 150 200 250 300

pi(Z) Gev



#a3nlo-pdf-ggh

aN3LO PDFs & gluon-fusion Higgs production (I)

Prior to the availability of (a)N3LO PDF sets, a separate uncertainty component
“‘PDF-TH” was estimated from the impact of a PDF mismatch at one order lower:
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#a3nlo-pdf-ggh

aN3LO PDFs & gluon-fusion Higgs production (1)
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#a3nlo-pdf-ggh

aN3LO PDFs & gluon-fusion Higgs production (lll)
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#a3nlo-pdf-ggh

aN3LO PDFs & gluon-fusion Higgs production (1V)

With two independent aN3LO sets, a more detailed look into approximated splitting functions

P (B); G5 =0.2 Tip =4
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#a3nlo-pdf-ggh
aN3LO PDFs & gluon-fusion Higgs production (V)

With two independent aN3LO sets, a more detailed look into approximated splitting functions

| Note: tiny y-scale! |
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#a3nlo-pdf-ggh

aN3LO PDFs & gluon-fusion Higgs production (VI)
Some differences between aN3LO sets by in gg luminosity

gg luminosity
Vs =13.60 TeV
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#vbf-studies

VBF studies () g g witn,
g 10°F % TAwK 1O
o Update @ 13.6 TeV for Higgs XSWG ° F = e .
Phase-space selection and binning (done) LINK I oarc¥
(aligned with VBF/VBS simplified fiducial volume) el
o State-of-the-art @ fixed-order g
- Validation on-going (looks good) L
- Inclusion of non-factorizable corrections T 12 0 E0__ 80700 A0 %0100
- Interference with irreducible background 2 B N —— SN SUOR O NN N
e e B B e e e s
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“5-’_ HISTO-MJJ-DPHIJJ-0-Plov4-PTJ-20

o Recommendation for PS uncertainties based on findings of [Buckey et al.; 2105.11399]
- Add a few generator/shower/matching combinations ...
— expectation: things are still under control

o Aglance at non-perturbative aspects ...
— expectation: ...

e ggH contamination into VBF phase space
(ongoing study with debugging happening @ Les Houches!)

14


https://phystev.cnrs.fr/wiki/2023:groups:smhiggs:ggf-background-vbf:start

VBF studies (Il)

e Study top-mass effects
in ggH with VBF cuts

e HEJ: Impact from
high-energy logs?

— Higgs summary
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Event files & Interpolation Grids

Discussed two approaches for dissemination of theory calculations

HighTea Speed vs Generality

R.Poncelet
Precomputed “theory events”

. A

that can be anglyzgd with a BlackHat
simple but flexible interface. ,

. = N-Tuple files
Storage efficiency through T 2560
(partial) unweighting; EJ ==l
possibilities to combine with 8 FastNLO
the positive-weight cell = PN
resampler? s

months hours minutes  Speed

Slide from Daniel Maitre
Loops and Legs 2014, Weimar, 1th May

APPLfast

K.Rabbertz, L.Kunz
Predefined histogram bins
for efficient re-evaluation
using different PDF param.
Indispensable in PDF fits.
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https://phystev.cnrs.fr/wiki/_media/2023:hightea.pdf
https://phystev.cnrs.fr/wiki/_media/2023:leshouches_2023_interpolationgrids.pdf
https://phystev.cnrs.fr/wiki/_media/2023:les_houches_applfast2_talk.pdf

Interpolation Grids (I)

Dataset Theory
CDF Z differential Sherpa+Vrap
DO Z differential Sherpa+Vrap
[DO W electron asymmetry] MCFM+FEWZ
D0 W muon asymmetry MCFM+FEWZ
ATLAS low-mass DY 7 TeV MCFM+FEWZ
ATLAS high-mass DY 7 TeV MCFM+FEWZ
ATLAS W, Z 7 TeV (L =35 pb~1) MCFM+FEWZ
ATLAS W,Z 7 TeV (L =4.6 fb~!) (*)  MCFM+FEWZ
CMS W electron asymmetry 7 TeV MCFM+FEWZ
CMS W muon asymmetry 7 TeV MCFM+FEWZ
CMS DY 2D 7 TeV MCFM+FEWZ
LHCb Z — ee 7 TeV MCFM+FEWZ
LHCb W, Z — p 7 TeV MCFM+FEWZ
[ATLAS W 8 TeV] (*) MCFM+DYNNLO
ATLAS low-mass DY 2D 8 TeV (¥*) MCFM+DYNNLO
ATLAS high-mass DY 2D 8 TeV (*) MCFM+FEWZ
CMS W rapidity 8 TeV MCFM+FEWZ
LHCb Z — ee 8 TeV MCFM+FEWZ
LHCb W, Z — pu 8 TeV MCFM+FEWZ
[LHCb W — e 8 TeV] (*) MCFM+FEWZ
ATLAS oip', 13 TeV (*) MCFM+FEWZ
LHCb Z — ee 13 TeV (*) MCFM+FEWZ
LHCb Z — pp 13 TeV (¥*) MCFM+FEWZ

So far, all Drell-Yan processes (& PT[V])
included in PDF fits employ:
(NLO tables) x (NNLO K-factors)

e extend all to NNLO grids
benchmark & compare different libraries:
APPLgrid, fastNLO, PineAPPL
e how stable are the K-factors?
e what is the impact on PDF fits?
[ ]

#grids

17



do

#grids

Interpolation Grids (lI)

LHCb Z — ee 13 TeV (*)

e non-flat K-factor LHCb Z — pp 13 TeV (*)

e Usage of inclusive N3LO K-factor tricky?
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Conclusion / Summary

e Fruitful exchange on various aspects of Standard Model phenomenology
e New projects started & good progress on on-going projects

We hope to see many of you
again for the next councelling
retreat in 2025!




