
GAMBIT Tutorial 
(a Global And Modular BSM Inference Tool)

Are Raklev & Anders Kvellestad, University of Oslo
Les Houches 2023 — June 28, 2023

G AM B I T



Are Raklev & Anders Kvellestad

Outline

2

1. Global fits  

2. GAMBIT 

3. GAMBIT-light 

4. GUM  

5. Summary



Are Raklev & Anders Kvellestad 3

1. Global fits



Are Raklev & Anders Kvellestad 4

The basic steps of a BSM global fit

• Choose your BSM theory and parameterisation 


• Construct the joint likelihood function including observables from collider 
physics, dark matter, flavour physics, cosmology, +++


• Use (sophisticated) scanning techniques to:


• Explore the model parameter space (θ1, θ2, θ3, …)


• At every point θ: calculate predictions(θ) → evaluate joint likelihood L(θ) 


• From likelihood samples, carry out frequentist or Bayesian inference 
(parameter estimation, model comparison, …) 

L = LcolliderLDMLflavorLEWPO . . .

4



Are Raklev & Anders Kvellestad 5

Computational challenges: 

• Need smart exploration of parameter space


• Need fast theory calculations


• Need fast simulations of experiments (e.g. LHC)


• Need sufficiently detailed likelihoods or 
full statistical models

θ1

θ2

θ3

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)
• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)
• L(θ)

• L(θ)• L(θ)

• L(θ)

• L(θ)

• L(θ) • L(θ)• L(θ)
• L(θ)

• L(θ)• L(θ)

• L(θ) • L(θ)• L(θ)

Some code infrastructure challenges: 

• Need different parameter scanning algorithms 

• Need model-agnostic core framework 

• Need to interface many external physics codes


• Need massive parallelisation…


• …which implies a need for diskless interfacing


• …which implies a need to stop external codes from 
calling STOP and kill your 10,000-CPU scan… :)



Are Raklev & Anders Kvellestad 6

10

★

➤

➤

GAMBIT v1.2.0

G AM B I T

⌦
V h 2

=
0.1

1
9

�3.5

�3.0

�2.5

�2.0

�1.5

�1.0

lo
g
1
0
�

h
V

P
r
o
fi
le

lik
e
lih

o
o
d

r
a
t
io

⇤
=

L
/L

m
a
x

50 55 60 65

mV (GeV)

0.2

0.4

0.6

0.8

1.0

Vector DM

Prof. likelihood

Fig. 1: Profile likelihood in the (mV , ⁄hV ) plane for vector DM. Contour lines show the 1 and 2‡ confidence regions. The left panel
gives an enhanced view of the resonance region around mV ≥ mh/2. The right panel shows the full parameter space explored in our
fits. The greyed out region shows points that do not satisfy Eq. (30), the white star shows the best-fit point, and the edges of the
preferred parameter space along which the model reproduces the entire observed relic density are indicated with orange annotations.

∆ ln L
Log-likelihood contribution Ideal Vµ Vµ + RD ‰ ‰ + RD Â Â + RD
Relic density 5.989 0.000 0.106 0.000 0.107 0.000 0.109
Higgs invisible width 0.000 0.000 0.000 0.000 0.001 0.000 0.000
“ rays (Fermi-LAT dwarfs) ≠33.244 0.105 0.105 0.102 0.120 0.129 0.136
LUX 2016 (Run II) ≠1.467 0.003 0.003 0.020 0.000 0.028 0.033
PandaX 2016 ≠1.886 0.002 0.002 0.013 0.000 0.018 0.021
PandaX 2017 ≠1.550 0.004 0.004 0.028 0.000 0.039 0.046
XENON1T 2018 ≠3.440 0.208 0.208 0.143 0.211 0.087 0.072
CDMSlite ≠16.678 0.000 0.000 0.000 0.000 0.000 0.000
CRESST-II ≠27.224 0.000 0.000 0.000 0.000 0.000 0.000
PICO-60 2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DarkSide-50 2018 ≠0.090 0.000 0.000 0.002 0.000 0.005 0.006
IceCube 79-string 0.000 0.000 0.000 0.000 0.000 0.001 0.001
Hadronic elements ‡s, ‡l ≠6.625 0.000 0.000 0.000 0.000 0.000 0.004
Local DM density fl0 1.142 0.000 0.000 0.000 0.000 0.000 0.001
Most probable DM speed vpeak ≠2.998 0.000 0.000 0.000 0.000 0.000 0.003
Galactic escape speed vesc ≠4.382 0.000 0.000 0.000 0.000 0.000 0.001
–s 5.894 0.000 0.000 0.000 0.000 0.000 0.001
Higgs mass 0.508 0.000 0.000 0.000 0.000 0.000 0.000
Total ≠86.051 0.322 0.428 0.308 0.439 0.307 0.434

Table 6: Contributions to the delta log-likelihood (∆ ln L) at the best-fit point for the vector, Majorana and Dirac DM, compared
to an ‘ideal’ case, both with and without the requirement of saturating the observed relic density (RD). Here ‘ideal’ is defined
as the central observed value for detections, and the background-only likelihood for exclusions. Note that many likelihoods are
dimensionful, so their absolute values are less meaningful than any o�set with respect to another point (for more details, see Sec.
8.3 of Ref. [81]).

5 Results

5.1 Profile likelihoods

In this section, we present profile likelihoods from the
combination of all Diver and T-Walk scans for the vec-
tor, Majorana and Dirac models. Profile likelihoods
in the vector model parameters are shown in Fig. 1,
with key observables rescaled to the predicted DM relic
abundance in Fig. 2. Majorana model parameter profile

likelihoods are shown in Figs. 3 and 4, with observables
in Fig. 5. For the Dirac model, we simply show the
mass-coupling plane in Fig. 6, as the relevant physics
and results are virtually identical to the Majorana case.

5.1.1 Vector model

Fig. 1 shows that the resonance region is tightly con-
strained by the Higgs invisible width from the upper-left
when mV < mh/2, by the relic density constraint from

15

★

●

➤

➤

GAMBIT v1.2.0

G AM B I T

⌦
V h 2

=
0.1

1
9

�3.5

�3.0

�2.5

�2.0

�1.5

�1.0

lo
g
1
0
�

h
V

R
e
la

t
iv

e
p
r
o
b
a
b
ilit

y
P

/P
m

a
x

50 55 60 65

mV (GeV)

0.2

0.4

0.6

0.8

1.0

Vector DM

T-Walk
Marg. posterior

Fig. 7: Marginalised posterior distributions in the (mV , ⁄hV ) plane for vector DM. Contour lines show the 1 and 2‡ credible
regions. The left panel gives the result of a scan restricted to the resonance region around mV ≥ mh/2. The right panel shows
a full-range parameter scan. The low-mass mode is su�ciently disfavoured in the full-range scan that it does not appear in the
righthand panel. The greyed out region shows points that do not satisfy Eq. (30). The posterior mean is shown by a white circle,
while the maximum likelihood point is shown as a white star. The edges of the preferred parameter space along which the model
reproduces the entire observed relic density are indicated with orange annotations.

to be within 1‡ of the Planck value, the p-value be-
comes p ¥ 0.35–0.65. For both the Majorana and Dirac
fermion models, we also find p ¥ 0.4–0.7, falling to 0.35–
0.65 with the relic density requirement. All of these are
completely acceptable p-values.

5.2 Marginal posteriors

The marginal posterior automatically penalises fine-
tuning, as upon integration of the posterior, regions
with a limited ‘volume of support’ over the parameters
that were integrated over are suppressed.11 As usual,
the marginal posteriors depend upon the choice of priors
for the free model parameters, which are summarised in
Tables 3 and 4. We choose flat priors where parameters
are strongly restricted to a particular scale, such as the
mixing parameter and the DM mass in scans restricted
to the low-mass region. For other parameters, in order
to avoid favouring a particular scale we employ logarith-
mic priors. Note that in this treatment for the fermionic
DM models we have not chosen priors that favour the
CP-conserving case. We instead present posteriors for
this well motivated case separately, and later in section
6 we perform a Bayesian model comparison between a
CP-conserving fermionic DM model and the full model
considered here.

11By ‘volume of support’, we mean the regions of the parameter
space that have a non-negligible likelihood times prior density.

5.2.1 Vector model

To obtain the marginal posterior distributions, we per-
form separate T-Walk scans for the low and high mass
regimes, shown in Fig. 7. Within each region we plot
the relative posterior probability across the parameter
ranges of interest.

In the left panel of Fig. 7, the scan of the resonance
region shows that the neck region is disfavoured after
marginalising over the nuisance parameters, particularly
mh, which sets the width of the neck. This dilutes the
allowed region due to volume e�ects.

In the full-mass-range scan, the fine-tuned nature
of the resonance region is clearly evident. Although
the best-fit point in the profile likelihood lies in the
resonance region, the posterior mass is so small in the
entire resonance region that it drops out of the global
2‡ credible interval.

5.2.2 Majorana fermion model

As already seen in the profile likelihoods, for the case
of Majorana fermion DM, the presence of the mixing
parameter › leads to a substantial increase in the pre-
ferred parameter region (see Fig. 8). In the resonance
region (left panel), there is now a thin neck-like region
at m‰ ¥ mh/2. This neck region is the same one seen
in both the scalar and vector profile likelihoods, but
falls within the 2‡ credible region of the Majorana pos-
terior, as the admittance of › reduces direct detection
constraints (Eq. 25), softening the penalisation from in-

[arxiv:1808.10465]

Typical result: 
Parameter estimation, presented as profile likelihood and/or posterior density plots



Are Raklev & Anders Kvellestad 7

2. GAMBIT

G AM B I T



Are Raklev & Anders Kvellestad 8

GAMBIT: The Global And Modular BSM Inference Tool
gambit.hepforge.org          github.com/GambitBSM EPJC 77 (2017) 784          arXiv:1705.07908

• Extensive model database, beyond SUSY
• Fast definition of new datasets, theories
• Extensive observable/data libraries 
• Plug&play scanning/physics/likelihood 

packages
• Various statistical options 

(frequentist /Bayesian)
• Fast LHC likelihood calculator
• Massively parallel
• Fully open-source
Members of: ATLAS, Belle-II, CLiC, CMS, 
CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON
Authors of: BubbleProfiler, Capt'n General, Contur, 
DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, 
EasyScanHEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, 
HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, 
Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, 
WIMPSim

Recent collaborators: P Athron, C Balázs, A Beniwal, S 
Bloor, T Bringmann, A Buckley, J-E Camargo-Molina, C 
Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J 
Edsjö, T Emken, A Fowlie, T Gonzalo, W Handley, J Harz, S 
Hoof, F Kahlhoefer, A Kvellestad, P Jackson, D Jacob, C Lin, 
N Mahmoudi, G Martinez, MT Prim, A Raklev, C Rogan, R 
Ruiz, P Scott, N Serra, P Stöcker , W. Su, A Vincent, C 
Weniger, M White, Y Zhang, ++

70+ participants in many experiments and numerous major theory codes



Are Raklev & Anders Kvellestad 9 G AM B I T

MSSM7: 1705.07917

10

★

★

GAMBIT 1.0.0

G AM B I T

MSSM7
Best fit

�2000

0

2000

4000

M
1
(G

eV
)

P
rofi

le
likelih

ood
ratio

⇤
=

L
/L

m
a
x

0 2000 4000 6000 8000
µ (GeV)

0.2

0.4

0.6

0.8

1.0

★

★

★
★★

GAMBIT 1.0.0

G AM B I T

MSSM7

�2000

0

2000

4000

M
1
(G

eV
)

0 2000 4000 6000 8000
µ (GeV)

★

★

GAMBIT 1.0.0

G AM B I T

MSSM7
Best fit

2000

4000

6000

8000

10000

m
f̃
(G

eV
)

P
rofi

le
likelih

ood
ratio

⇤
=

L
/L

m
a
x

�5000 0 5000
M2 (GeV)

0.2

0.4

0.6

0.8

1.0

Fig. 3: Left: Joint profile likelihoods in the µ–M1 (top) and M2–m
f̃

planes (bottom). Stars indicate the point of highest likelihood
in each plain, and white contours correspond to the 1‡ and 2‡ CL regions with respect to the best-fit point. Right: Coloured regions
indicating in which parts of the 2‡ best-fit region di�erent co-annihilation and funnel mechanisms contribute to keeping the relic
density low. The best-fit point in each region is indicated by a star with the corresponding colour.

of Fig. 3). Because the MSSM7 employs a common
sfermion soft-mass parameter m

2
f̃

at the input scale
(Q = 1 TeV in our case), mass splittings among di�er-
ent sfermions are mostly generated by varying amounts
of mixing. In comparison, the contribution from RGE
running from Q = 1 TeV to Q = MSUSY, which splits
m

2
f̃

into individual soft masses, is generally subdomi-
nant.

In the tree-level stop mass matrix the o�-
diagonal element is vyt(Au3 sin — ≠ µ cos —), while it
is vyb,· (Ad3 cos — ≠ µ sin —) in the sbottom and stau
mass matrices, where yt,b,· are the fermion Yukawa cou-
plings and v ¥ 246 GeV. Because increased left-right
mixing reduces the mass of the lighter of the two mass
eigenstates, the large top Yukawa ensures that t̃1 is the

lightest sfermion across most of the allowed parameter
space (including for models that exhibit sbottom co-
annihilation). With 3 Æ tan — Æ 70 the terms Au3 sin —

(stop) and µ sin — (sbottom and stau) dominate the
sfermion mixing in large regions of parameter space.
The dependence on large µ to obtain a sbottom mass
significantly lower than the mass set by the common
m

f̃
parameter explains why the sbottom co-annihilation

region does not extend as far to small µ as the stop co-
annihilation region in Fig. 3. Also, since yb ¥ 2.5y· , the
lightest stau remains heavier than the lightest sbottom
in the regions of parameter space with large mixing for
the down-type sfermions, which explains the absence
of any region dominated by stau co-annihilation in our
results.

GUT-scale SUSY: 1705.07935

14

★

★

GAMBIT 1.0.0

G AM B I T

CMSSM

Best fit

1000

2000

3000

4000

5000

6000

m
1
/
2
(G

eV
)

P
rofi

le
likelih

ood
ratio

⇤
=

L
/L

m
a
x

2000 4000 6000 8000 10000
m0 (GeV)

0.2

0.4

0.6

0.8

1.0

★
★

★

GAMBIT 1.0.0

G AM B I T

CMSSM

1000

2000

3000

4000

5000

6000

m
1
/
2
(G

eV
)

2000 4000 6000 8000 10000
m0 (GeV)

★

★

GAMBIT 1.0.0

G AM B I T

CMSSM

Best fit

�5000

0

5000

10000

A
0
(G

eV
)

P
rofi

le
likelih

ood
ratio

⇤
=

L
/L

m
a
x

10 20 30 40 50 60
tan�

0.2

0.4

0.6

0.8

1.0

Fig. 2: Left: The profile likelihood ratio in the CMSSM, for m0 and m1/2 (top) and tan — and A0 (bottom), with explicit 68%
and 95% CL contour lines drawn in white, and the best fit point indicated by a star. Right: Colour-coding shows the mechanisms
active in models within the 95% CL contour for avoiding thermal overproduction of neutralino dark matter, through either
chargino co-annihilation, resonant annihilation via the A/H funnel, or stop co-annihilation. Other potential mechanisms (e.g. stau
co-annihilation) are not present, as they do not lie within the 95% CL contour.

We now see that relaxing the relic density con-
straint to an upper limit opens up a much richer set of
phenomenologically-viable scenarios, with lighter Hig-
gsino or mixed Higgino-bino LSPs. From the perspective
of global fits, treating the relic density as an upper bound
is a conservative approach, and allows us to test whether
the preference for heavy spectra found in recent studies
[115, 146, 308] persists even when a greater variety of
light LSPs is permitted.

The right panel of Fig. 1 shows that at 95% CL,
all of the identified annihilation mechanisms (stop co-
annihilation, A/H-funnel and chargino co-annihilation)
permit solutions where the measured relic density is fully
accounted for, as well as scenarios where only a very

small fraction of the DM relic abundance is explained
in the CMSSM. The fit does not demonstrate any clear
preference for the relic density to be under-abundant or
very close to the measured value. Looking at the top
of this plot, we indeed see the established picture for
chargino co-annihilation discussed above, where a pure
Higgsino DM candidate should have a mass of around
1 TeV to fit the observed relic density.

In Fig. 2, we show 2D CMSSM joint profile likeli-
hoods for m0 and m1/2, as well as for tan — and A0.
Here the plots include both positive and negative µ, and
are again coloured by relic density mechanism. We see
a large region of high likelihood at large m0 and m1/2,
consisting of overlapping chargino co-annihilation and

Scalar Higgs portal DM: 
1705.07931

Scalar Higgs portal DM w/ vac. 
stability: 1806.11281

Vector and fermion Higgs portal 
DM: 1808.10465

EW-MSSM: 1809.02097 Axion-like particles: 1810.07192 Right-handed neutrinos: 
1908.02302

Flavour EFT: 2006.03489 More axion-like particles: 
2007.05517

Neutrinos and cosmo: 2009.03287 Dark matter EFTs: 2106.02056

Cosmo ALPs: 2205.13549 Simplified DM, scalar/fermion: 
2209.13266

Simplified DM, vector: 2303.08351 EW-MSSM w/ light gravitino: 
2303.09082



G AM B I T
Are Raklev & Anders Kvellestad 10

Models Core ScannerBit

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs, 
FlexibleSUSY, gamLike, gm2calc, HEPLike, 
HiggsBounds, HiggsSignals, MicrOmegas, nulike, 
Pythia, SPheno, SUSYHD, SUSYHIT, SuperIso, 
Vevacious, MontePython, CLASS, AlterBBN, …

Backends

Diver, GreAT, MultiNest, 
PolyChord, TWalk, grid, random, 
postprocessor, …

Scanners

ColliderBit DarkBit FlavBit

SpecBit DecayBit PrecisionBit

Physics modules

NeutrinoBit CosmoBit



Are Raklev & Anders Kvellestad 11 G AM B I T

Some basic technical features

• Two-level parallelisation: 

• MPI for parameter sampling algorithm

• OpenMP for per-point physics computations


• Collection of sampling algorithms as plug-ins (scanners) 

• Coming soon: plug in your own python sampling code 


• Backend system for using C, C++, Fortran, Python and Mathematica 
codes as runtime plug-ins for physics computations


• Run configuration through YAML input file


• Dynamic dependency resolution: order of computations not hard-coded



Are Raklev & Anders Kvellestad 12

3. GAMBIT-light

G AM B I T



Are Raklev & Anders Kvellestad 13 G AM B I T

• GAMBIT can be used beyond particle physics 


• At its core: A general tool for computationally heavy optimisation and  
parameter estimation tasks


• Coming soon: GAMBIT-light 
A lightweight GAMBIT without the particle physics 

GAMBIT-light



G AM B I T
Are Raklev & Anders Kvellestad 14

Models Core ScannerBit

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs, 
FlexibleSUSY, gamLike, gm2calc, HEPLike, 
HiggsBounds, HiggsSignals, MicrOmegas, nulike, 
Pythia, SPheno, SUSYHD, SUSYHIT, SuperIso, 
Vevacious, MontePython, CLASS, AlterBBN, …

Backends

Diver, GreAT, MultiNest, 
PolyChord, TWalk, grid, random, 
postprocessor, …

Scanners

ColliderBit DarkBit FlavBit

SpecBit DecayBit PrecisionBit

Physics modules

NeutrinoBit CosmoBit



G AM B I T
Are Raklev & Anders Kvellestad 15

Models Core ScannerBit

Minimal C, C++, Fortran, Python  
interface libraries

Diver, GreAT, MultiNest, 
PolyChord, TWalk, grid, random, 
postprocessor, …

Scanners
LightBit

Your target function code here
(C, C++, Python, Fortran)



Are Raklev & Anders Kvellestad 16

3. GUM: 
the GAMBIT Universal Model Machine

G AM B I T

[arxiv:2107.00030]



Are Raklev & Anders Kvellestad 17 G AM B I T

GUM: the GAMBIT Universal Model Machine

• From Lagrangian to a GAMBIT global fit

• The major addition in GAMBIT 2.0

• Runs existing BSM tool chains to generate model-specific physics libraries

• Generates interfaces for these libraries to the relevant Bits in GAMBIT

• Generates additional GAMBIT code (model definition, particle database additions, …)

[Figure from Christopher Chang]



Are Raklev & Anders Kvellestad 18 G AM B I T

From FeynRules 
• Any Lagrangian (including EFTs),  

works at tree level

• CalcHEP

• micrOMEGAS (via CalcHEP)

• Pythia (via MadGraph)

GUM: the GAMBIT Universal Model Machine
3

Generated GAMBIT backends FeynRules SARAH Usage in GAMBIT

CalcHEP 3 3 Decays, cross-sections
micrOMEGAs (via CalcHEP) 3 3 DM observables
Pythia (via MadGraph) 3 3 Collider physics
SPheno 7 3 Particle mass spectra, decay widths
Vevacious 7 3 Vacuum stability

Table 1: GAMBIT backends with GUM support and Lagrangian-level tools used to generate them. Apart from the external packages
listed, GUM also produces GAMBIT Core and physics module code tailored to the model and observables of interest.

Although the outputs of SARAH are more sophisti-
cated than those of FeynRules, it also has limitations.
Unlike in FeynRules, it is not generally possible to de-
fine non-renormalisable theories or higher-dimensional
e�ective theories in SARAH. We therefore provide inter-
faces to both FeynRules and SARAH to allow the user to
incorporate a vast range of theories into GAMBIT, from
e�ective field theories (EFTs) via FeynRules to complex
UV-complete theories in SARAH. We stress that if a
model can be implemented in SARAH, then the user
should use SARAH over FeynRules – both to use GAM-
BIT to its full potential, and to perform more detailed
physics studies. The basic outputs available from GUM
in each case are summarised in Table 1.1

This manual is organised as follows: in Sec. 2, we de-
scribe the code structure and outputs of GUM. In Sec. 3
we give usage details, including installation, the GUM
file, and particulars of FeynRules and SARAH model
files. In Sec. 4 we provide a worked example, where we
use GUM to add a simplified DM model to GAMBIT,
and perform a quick statistical fit to DM observables.
Finally, in Sec. 5, we discuss future extensions of GUM
and summarise. We include details of the new GAMBIT
interfaces to CalcHEP, Vevacious and SARAH-SPheno
(the auto-generated version of SPheno created using
SARAH) in the Appendix.

GUM is open source and part of the GAMBIT 2.0
release, available from gambit.hepforge.org under the
terms of the standard 3-clause BSD license.2

2 Code design

GAMBIT consists of a set of Core software components,
a sampling module ScannerBit [3], and a series of physics
modules [4–9]. Each physics module is in charge of a

1Some readers will note the absence of FlexibleSUSY from this
list; this is due to the complex C++ templates used in Flexi-
bleSUSY and the fact that supporting it fully as a backend in
GAMBIT requires significant development of the classloading
abilities of the backend-on-a-stick script (BOSS) [1]. Once this
challenge has been overcome, future versions of GUM will also
generate code for FlexibleSUSY and its other flexi-bretheren.
2http://opensource.org/licenses/BSD-3-Clause.

domain-specific subset of GAMBIT’s physical calcula-
tions. GUM generates various snippets of code that it
then adds to parts of the GAMBIT Core, as well as
to some of the physics modules, enabling GAMBIT to
employ the capabilities of those modules with the new
model.

Within the Core, GUM adds code for any new parti-
cles to the GAMBIT particle database, and code for the
new model to the GAMBIT models database, informing
GAMBIT of the parameters of the new model so that
they can be varied in a fit. GUM also generates interfaces
(frontends) to the external codes (backends) that it is
able to generate. The backends supported by GUM in
this manner are those listed as outputs in Table 1.

Within the physics modules, GUM writes new code
for the SpecBit [8] module, responsible for spectrum
generation within GAMBIT, DecayBit [8], responsible
for calculating the decays of particles, DarkBit [4], re-
sponsible for DM observables, and ColliderBit [5], the
module that simulates hard-scattering, hadronisation
and showering of particles at colliders, and implements
subsequent LHC analyses.

GUM is primarily written in Python, with the excep-
tion of the Mathematica interface, which is written in
C++ and accessed via Boost.Python.

Initially, GUM parses a .gum input file, using the con-
tents to construct a singleton gum object. Details of the
input format can be found in Sec. 3.3. GUM then per-
forms some simple sanity and consistency checks, such
as ensuring that if the user requests DM observables,
they have also specified a DM candidate. GUM then
opens an interface to either FeynRules or SARAH via
the Wolfram Symbolic Transfer Protocol (WSTP), loads
the FeynRules or SARAH model file that the user has re-
quested into the Mathematica kernel, and performs some
additional sanity checks using the inbuilt diagnostics of
each package.

Once GUM is satisfied with the FeynRules or SARAH
model file, it extracts all physical particles, masses and
parameters (e.g. mixings and couplings). The minimal
information required to define a new particle is its mass,
spin, color representation, PDG code, and electric charge
(if non-self conjugate). For a parameter to be extracted,

From SARAH

• Renormalizable theories,  

one-loop

• CalcHEP

• micrOMEGAS (via CalcHEP)

• Pythia (via MadGraph)

• SPheno

• Vevacious

• + input for existing HiggsBounds + HiggsSignals 

backends  (via SARAH-SPheno)



Are Raklev & Anders Kvellestad 19

Summary



Are Raklev & Anders Kvellestad 20

• GAMBIT is an open-source tool for large-scale global fits of new theories in 
particle physics


• A modular and model-independent core software framework  
→ GAMBIT has been used to investigate a wide range of new theories


• Recent development: GUM — the GAMBIT Universal Model machine, allows 
the user to start from a Lagrangian model definition


• Coming soon: GAMBIT-light 


• New webpage & GitHub: gambitbsm.org and github.com/GambitBSM/gambit_2.4


• GAMBIT Community results are publicly available: zenodo.org/communities/
gambit-official

G AM B I T

Summary

http://gambitbsm.org
https://github.com/GambitBSM/gambit_2.4
http://zenodo.org/communities/gambit-official
http://zenodo.org/communities/gambit-official


Are Raklev & Anders Kvellestad

Results available on zenodo.cern.ch 
• Parameter point samples (hdf5 files)

• GAMBIT input files for all scans

• Example plotting routines

 
 
Links at gambitbsm.org/community/
publications/ 

21 G AM B I T

All GAMBIT Community results publicly available

http://zenodo.cern.ch
http://gambitbsm.org/community/publications/
http://gambitbsm.org/community/publications/
http://gambitbsm.org/community/publications/


Are Raklev & Anders Kvellestad 22 G AM B I T

Bonus tracks



Are Raklev & Anders Kvellestad 23 G AM B I T

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file



Are Raklev & Anders Kvellestad 24 G AM B I T

Write a .gum file

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file



Are Raklev & Anders Kvellestad 25 G AM B I T

Write a .gum file

Run GUM

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

Compile GAMBIT + backends

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file



Are Raklev & Anders Kvellestad 26 G AM B I T

Write a .gum file

Run GUM

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

Compile GAMBIT + backends

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file



Are Raklev & Anders Kvellestad 27 G AM B I T

Write a .gum file

Run GUM

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

Compile GAMBIT + backends

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file



Are Raklev & Anders Kvellestad 28 G AM B I T

Write a .gum file

Run GUM

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

Compile GAMBIT + backends

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

20

Here we will use the GAMBIT input file gum/
Tutorial/MDMSM_Tute.yaml. Although it does contain a
little more than the GAMBIT input file automatically
generated by GUM (yaml_files/MDMSM_example.yaml), it
is still fairly standard, so we will cover only the impor-
tant sections here. For an overview of YAML files in
GAMBIT, we refer the reader to Sec. 6 of the GAMBIT
manual [1].

Firstly the parameters section indicates all models
required for this scan: not just the MDMSM parameters,
but also SM parameters, nuclear matrix elements and
DM halo parameters. The parameter range of interest for
the MDMSM model will be masses ranging from 45 GeV
to 10 TeV, and dimensionless couplings ranging from
10≠4 to 4fi. We will scan each of these four parameters
logarithmically.

Parameters:

# Import some default GAMBIT SM values
StandardModel_SLHA2: !import
include/StandardModel_SLHA2_defaults.yaml

# Higgs sector is defined separately in GAMBIT
StandardModel_Higgs:

mH: 125.09

# Our dark matter model, implemented by GUM
MDMSM:

mchi:
range: [45, 10000]
prior_type: log

mY:
range: [45, 10000]
prior_type: log

gchi:
range: [1e-4, 12.566]
prior_type: log

cY:
range: [1e-4, 12.566]
prior_type: log

# Default halo parameters for the example
Halo_gNFW_rho0:

rho0: 0.3
v0: 240
vesc: 533
vrot: 240
rs: 20.0
r_sun: 8.5
alpha: 1
beta: 3
gamma: 1

# Nuclear matrix parameters, also default
nuclear_params_sigmas_sigmal:

sigmas: 43
sigmal: 58
deltau: 0.842
deltad: -0.427
deltas: -0.085

The ObsLikes section includes likelihoods concerning the
relic density, indirect detection from dSphs, and direct
detection experiments.
ObsLikes:

# Relic density
- capability: lnL_oh2

purpose: LogLike

# Indirect detection
- capability: lnL_FermiLATdwarfs

purpose: LogLike

# Direct detection: LUX experiment
- capability: LUX_2016_LogLikelihood

purpose: LogLike

# Direct detection: XENON1T experiment
- capability: XENON1T_2018_LogLikelihood

purpose: LogLike

The Rules section uniquely specifies the functions to use
for the dependency resolver:
Rules:

# Use MicrOmegas to compute the relic density
- capability: RD_oh2

function: RD_oh2_MicrOmegas

# Choose to implement the relic density
# likelihood as an upper bound, not a detection
- capability: lnL_oh2

function: lnL_oh2_upperlimit

# Choose to use detailed Fermi Pass 8 dwarf
# likelihoood from gamlike
- capability: lnL_FermiLATdwarfs

function: lnL_FermiLATdwarfs_gamLike

# Choose to get decays from regular DecayBit
Òæfunction,

# not from an SLHA file nor SPheno.
- capability: decay_rates

function: all_decays

# Choose to rescale signals in direct and indirect
# detection by the relic density fraction
- capability: RD_fraction

function: RD_fraction_leq_one

The scanner section selects the di�erential evolution
sampler Diver [3] with a fairly loose stopping tolerance
of 10≠3 and a working population of 10,000 points.
Scanner:

# Select differential evolution (DE) scanner
use_scanner: de

scanners:

# Select settings for DE with Diver
de:

plugin: diver
like: LogLike
NP: 10000

Adjust GAMBIT input file

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
# Choose FeynRules
package: feynrules
# Name of the model
model: MDMSM
# Model builds on the Standard Model FeynRules file
base_model: SM
# The Lagrangian is defined by the DM sector (LDM),
# defined in MDMSM.fr, plus the SM Lagrangian (LSM)
# imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
# Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

# PDG code of the annihilating DM candidate
# in the FeynRules file
wimp_candidate: 52

# Select outputs for DM physics.
# Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file



Are Raklev & Anders Kvellestad 29 G AM B I T

Run GAMBIT!

• 4D scan (mX, mY, gX, cY)

• Relic abundance (as upper bound) 

[micrOMEGAs]

• Direct detection: XENON1T 2018, LUX 2016 

[micrOMEGAs, DDCalc]

• Indirect detection: Fermi-LAT dwarf galaxies 

[CalcHEP, DarkSUSY, gamLike]

• ~11 hours on 4-core laptop,  

sampling ~300k parameter points [Diver]  

• Same model 
• 1D scan of mY


• mX = 1 GeV, gX = 1, cY = 1 
• Collider: ATLAS 2lep+jets+MET, 139 fb-1 

[Pythia, ColliderBit]

• Light mY disfavoured, but can easily be accommodated 

in the larger 4D parameter space

25

The modular nature of GUM means extension is
straightforward. Future planned extensions include com-
putations of modifications of SM precision observ-
ables and decays, a four-fermion EFT plugin connect-
ing FeynRules and CalcHEP, multi-component and co-
annihilating dark matter models, and interfacing to the
GAMBIT flavour physics module FlavBit via FlavorKit, to
the spectrum generator FlexibleSUSY, to micrOMEGAs
5 and to the dark matter package MadDM.

Acknowledgements We thank the rest of the GAMBIT com-
munity for many helpful discussions, and for helping to develop
and test GAMBIT over a period of many years. We also acknowl-
edge PRACE for awarding us access to Marconi at CINECA,
Italy, and Joliot-Curie at CEA, France. PS is supported by the
Australian Research Council (ARC) under grant FT190100814.
PA and CB are supported by the ARC under grant DP180102209.
This project was also undertaken with the assistance of resources
and services from the National Computational Infrastructure,
which is supported by the Australian Government. We also thank
Astronomy Australia Limited for financial support of comput-
ing resources. JJR acknowledges support by Katherine Freese
through a grant from the Swedish Research Council (Contract
No. 638-2013-8993). JECM is supported by the Carl Trygger
Foundation through grant no. CTS 17:139.

A: Collider constraints on the Majorana DM

simplified model with scalar mediator

We argued in Sec. 4 that the collider constraints are
expected to be subleading for the MDMSM. To justify
and clarify that argument, and to demonstrate GUM’s
ability to generate code for collider simulations, we
here investigate the likelihood contribution from LHC
searches.

It has been demonstrated that monojet searchers are
not necessarily the most constraining searches for the
MDMSM [86]. In fact, given the large Yukawa couplings
the tree level production of top quark pairs together
with the mediator Y , despite the large final state masses,
should be the most sensitive final state at the 13 TeV
LHC. To investigate the constraints from this process, we
select a 139 fb≠1 ATLAS search for final states with two
leptons, jets and missing momentum, which is targeted
to this specific final state [99].

The computational requirement of a GAMBIT scan
increases significantly when full collider simulations with
ColliderBit are included. For this example scan we there-
fore only vary the mass mY of the mediator particle.
The simulations are performed using the GUM-generated
Pythia interface, as described in sections 2.2.4 and 2.3.5.
For each parameter point in the scan we generate 12 mil-
lion Pythia events. The events are then passed through
fast detector simulation in ColliderBit and selection cuts
emulating the ATLAS search. This search targets events

Fig. 6: The log-likelihood contribution ∆ ln L = ln L(s + b) ≠
ln L(b) from a simulation of the ATLAS search in Ref. [99] in a
scan of the mediator mass mY in the MDMSM. The mediator
coupling to SM particles (cY ) and to DM (g‰) are set to cY =
g‰ = 1, and the DM mass is fixed at m‰ = 1 GeV. The dashed
black line denotes ∆ ln L = 0, i.e. the limit where the signal
plus background prediction fits the data equally as well as the
background-only prediction. The dashed red line at ∆ ln L = ≠2
shows the ∆ ln L limit corresponding to a 2‡ confidence interval
on mY .

with two opposite-charge leptons, jets and missing trans-
verse momentum. No large excesses are observed in this
search; across all signal regions the observed event counts
agree with the Standard Model expectations to around
the 2‡ level.

The ATLAS analysis defines both exclusive and in-
clusive signal regions based on the ‘stransverse mass’
kinematic variable and the signal lepton flavours. For
our scan we consider the exclusive signal regions. There
is no publicly available full likelihood function for this
analysis, nor any data on correlations, and we therefore
take the conservative approach of only using the like-
lihood contribution from the single signal region with
the best expected sensitivity at each point in our scan.
As a consequence of this, we expect to find some sharp
features and kinks in the likelihood function where the
most sensitive signal region changes.

Figure 6 shows the resulting ATLAS likelihood func-
tion in our scan of the mediator mass mY , with the other
model parameters set to m‰ = 1 GeV and cY = g‰ = 1.
Following the standard approach in ColliderBit, we show
the log-likelihood di�erence ∆ ln L = ln L(s+b)≠ln L(b),
where L(s + b) denotes the likelihood when the pre-
dicted DM signal (s) is added on top of the SM back-
ground expectation (b), and L(b) is the likelihood for
the background-only prediction. Further details on the
likelihood evaluation in ColliderBit are given in Ref. [5].

21

convthresh: 1e-3
verbosity: 1

To perform the scan we copy the GAMBIT input file
to the yaml_files folder within the GAMBIT root direc-
tory. This is a necessary step, as we need to !import
the appropriate Standard Model YAML file from the
relative path include (i.e. the folder yaml_files/include
in the GAMBIT root directory). From the GAMBIT root
directory, we

cp gum/Tutorial/MDMSM_Tute.yaml yaml_files/

and run GAMBIT with n processes,

mpirun -n n gambit -f yaml_files/MDMSM_Tute.yaml

The above scan should converge in a reasonable time
on a modern personal computer; this took 11 hr to run
across 4 cores on a laptop with an i5-6200U CPU @
2.30GHz, sampling 292k points in total. The results of
this scan are shown below.

Note that whilst the scan has converged statistically,
the convergence criterion that we set in the input file
above is not particularly stringent, so many of the con-
tours presented in this section are not sampled well
enough to be clearly defined. A serious production scan
would typically be run for longer, and more e�ort made
to map the likelihood contours more finely. Nonetheless,
the samples generated are more than su�cient to extract
meaningful physics.

Once the scan has finished, we can plot the result
using pippi [84]. As Diver aims to finds the maximum
likelihood point, we will perform a profile likelihood
analysis with pippi. Assuming that pippi is in $PATH, do

cd gum/Tutorial
pippi MDMSM.pip

which will produce plots of the four model parameters
against one another, as well against as a raft of observ-
ables such as the relic abundance and spin-independent
cross-section (rescaled by f).

4.4 Results

The upper panel of Fig. 1 shows the profile likelihood
in the plane of the DM mass m‰ against the media-
tor mass mY . The relic density requirement maps out
the structure in the same plane. There are two sets
of solutions: firstly when the DM is heavier than the
mediator, m‰ > mY (bordered by the red dashed line
in Fig. 1), and secondly where DM annihilates on reso-
nance, 2m‰ ¥ mY (centred on the purple dashed line
in Fig. 1).

★
GUM+GAMBIT 2.0.0, Diver 1.0.4, pippi 2.1

G AM B I T

m �
=
m Y

2
m �

=
m Y

2.0

2.5

3.0

3.5

lo
g
1
0
(
m

�
/G

e
V
)

P
r
o
fi
le

lik
e
lih

o
o
d
r
a
t
io

⇤
=

L
/L

m
a
x

2.0 2.5 3.0 3.5
log10 (mY/GeV)

0.2

0.4

0.6

0.8

1.0

Fig. 1: Profile likelihood in the m‰–mY plane with the relic
density as an upper bound (upper panel) and as an observation
(lower panel). Above the red dashed line at m‰ = mY , DM can
annihilate into Y bosons. The purple dashed line at 2m‰ = mY

indicates the region where DM can annihilate on resonance.
Contour lines show the 1 and 2‡ confidence regions. The white
star shows the best-fit point. The grey contours in the lower
panel the 1 and 2‡ contours from the upper panel.

When m‰ < mY and the Y Y annihilation channel is
not kinematically accessible, annihilation predominantly
occurs via an s-channel Y to bb or tt, depending on the
DM mass. In this case, the only way to e�ciently deplete
DM in the early Universe is when annihilation is on
resonance, m‰ ¥ mY /2. Away from the resonance when
the Y Y channel is closed, even couplings of 4fi are not
large enough to produce a su�ciently high annihilation
cross-section to deplete the thermal population of ‰ to
below the observed value.

When kinematically allowed, ‰‰ æ Y æ tt is the
dominant process responsible for depleting the DM



Are Raklev & Anders Kvellestad 30

Understanding the full implications of [experimental] searches 
requires the interpretation of the experimental results in the 
context of many more theoretical models than are currently 

explored at the time of publication. 
HEP Software Foundation [arxiv:1712.06982]

See also: 


• Publishing statistical models: Getting the most out of particle physics experiments  
[arxiv:2109.04981] 


• Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2 
[arxiv:2003.07868] 

• Simple and statistically sound strategies for analysing physical theories  
[arxiv:2012.09874]



Are Raklev & Anders Kvellestad 31

Full Poisson likelihood from fast MC simulation of searches 

• Focus on speed


• MC generation: Pythia8 parallelised with OpenMP 
 + other speed tweaks 


• Detector simulation: Fast simulation based on  
4-vector smearing


• Cross-sections: LO+LL from Pythia8 
Coming soon: fast NLO cross-sections for SUSY


• Analysis system: Event-level, independent of simulation


• Extensive list of ATLAS/CMS searches

• ~40 searches, most at 13 TeV

• mainly SUSY + some monojet DM searches


• Likelihoods:  
• marginalise/profile correlated bkg uncertainties; or

• use «best expected» SR 

• ColliderBit Solo (coming soon): 
• standalone tool

• only the analyses + likelihood evaluation (fast)

• takes HepMC events as input

5

Cross-section calculation

Veto point if small

Default: Pythia 8

MC event

generation

Default: Pythia 8

Detector

simulation

Default: BuckFast

Event analyses

. . .
N cores

(OpenMP)

MC event

generation

Default: Pythia 8

Detector

simulation

Default: BuckFast

Event analyses

Statistical routines

Fig. 1: Schematic diagram of the ColliderBit processing chain for
LHC likelihoods.

For many models, these are the state-of-the-art. For
models where an NLO (or better) calculation exists,
e.g the MSSM, this is a conservative approximation, as
the k-factors are predominantly greater than one. The
LO+LL MSSM cross-sections are considerably quicker
to evaluate than the full NLO results obtained using
e.g. Prospino [42–44]. A single evaluation of just the
strong production cross-sections for a CMSSM bench-
mark point, with all relevant processes kinematically
available, takes around 15 minutes of CPU time on a
modern processor using Prospino 2.1 (Intel Core i5 at
2.6GHz). This is clearly unusable in a scan where the
evaluation of a single parameter point must be done in
times on the order of a few seconds. Although a fast
interpolation routine with added NLL corrections ex-
ists in NLL-fast [45–49], this interpolation is limited to
models with degenerate squark masses.

With the improvement to NLO+NLL, the error from
the factorisation and renormalisation scales has been
shown to be as low as 10% [46] for a wide range of
processes and masses; however, PDF and ↵s uncertain-
ties must be included in the total error budget. These
increase with the sparticle masses because the PDFs are
most poorly constrained at large scales and at large par-
ton x. As an example, at 8 TeV NLL-fast 2.1 gives errors
of (+24.3%,�22.2%) and (+8.3%,�7.3%), for the PDF
and ↵s, respectively, using the MSTW2008NLO PDF
set [50], with gluino and squark masses set to 1.5 TeV.

Num. cores t (105 events) Speed-up

1 479 sec 1
4 148 sec 3.2
8 121 sec 4.0
16 79 sec 6.1
20 81 sec 5.9

Table 1: Time taken for the ColliderBit LHC likelihood calcula-
tion as a function of the number of cores, for 100,000 SUSY events
at the SPS1a parameter point [53, 54], including all sub-processes.
The processes were run on a single computer node, with ISR, FSR,
and full hadronisation enabled, but multiple parton interactions
and tau decay spin correlations disabled. GAMBIT was compiled
with full optimisation settings (cf. Section 11 of Ref. [1]).

Because 1.5 TeV is at the edge of the LHC reach at that
energy, the total error budget here will not drop much
below 25% even with NLO+NLL cross-sections.3

In light of the above, we take the conservative path
of calculating likelihoods with the LO Pythia 8 cross-
sections for the LHC. Assigning errors to these cross-
sections is rather meaningless, considering the mono-
tonic nature of LO scale-dependence, and the fact that
the LO cross-sections in BSM models are known to al-
most always lie significantly below the NLO and higher
order cross-section, sometimes by as much as a factor
of two.4 The LO cross-sections are hence nearly always
more conservative than the lower edge of the most pes-
simistic NLO uncertainty band due to renormalisation
scale systematics. We have verified that this choice, com-
bined with the approximations used in the event and
detector simulation, results in limits equal to or more
conservative than those in the included ATLAS and
CMS analyses (see Section 2.1.7). In future releases we
will allow the user to supply cross-sections as input to
the event generation, allowing one to calculate them
using any preferred choice of external code (known in
GAMBIT as a “backend”).

2.1.4 Monte Carlo event generation

For the ColliderBit event generation, we supply an inter-
face to the Pythia 8 [38, 39] event generator, alongside
custom code that parallelises the main event loop of
Pythia using OpenMP.5 This substantially reduces the
runtime, as seen in Table 1.

For the purposes of BSM searches, many time-
consuming generator components also add little to the

3With the CTEQ6.6M PDF set [51], the errors increase to
(+63.1%,�38.5%) and (+15.6%,�10.3%); these uncertainties
will reduce somewhat as PDF fits including higher-x LHC data
become available.
4For a recent thorough exploration of K-factors in the MSSM up
to approximate NNLO+NNLL order see [? ] and Fig. 2 within.
5For an earlier similar approach, see Ref. [52].

[arXiv:1705.07919]
31

Example: ColliderBit

G AM B I T



G AM B I T
Are Raklev & Anders Kvellestad

• Basic building blocks: module functions 

• A physics module: a collection of module 
functions related to the same physics topic


• Each module function has a single capability 
(what it calculates) 


• A module function can have dependencies 
on the results of other module functions


• A module function can declare which 
models it can work with 

• GAMBIT determines which module functions 
should be run in which order for a given scan 
(dependency resolution) 

32

Dependency resolution



G AM B I T
Are Raklev & Anders Kvellestad

40

CMSSM_parameters
Type: ModelParameters

Function: primary_parameters
Module: CMSSM

LibFirst_1_1_init
Type: void

Function: LibFirst_1_1_init
Module: BackendIniBit

nevents_postcuts
Type: int

Function: predicted_events
Module: ExampleBit_B

Example_lnL_B
Type: double

Function: example_lnL
Module: ExampleBit_B

LibFortran_1_0_init
Type: void

Function: LibFortran_1_0_init
Module: BackendIniBit

function_pointer
Type: fptr

Function: function_pointer_retriever
Module: ExampleBit_A

particle_id
Type: std::string

Function: particle_identity
Module: ExampleBit_B

ptr_arr_tests
Type: int

Function: ptrArrTester
Module: ExampleBit_B

test_BE_Array
Type: double

Function: Backend_array_test
Module: ExampleBit_A

test_vector
Type: std::vector<double>

Function: exampleVec
Module: ExampleBit_B

nevents
Type: double

Function: nevents_pred
Module: ExampleBit_A

nevents
Type: int

Function: nevents_pred_rounded
Module: ExampleBit_A

eventLoopManagement
Type: void

Function: eventLoopManager
Module: ExampleBit_A

event
Type: float

Function: exampleEventGen
Module: ExampleBit_A

event
Type: int

Function: exampleCut
Module: ExampleBit_A

eventAccumulation
Type: int

Function: eventAccumulator
Module: ExampleBit_A

Example_lnL_A
Type: double

Function: nevents_like
Module: ExampleBit_A

xsection
Type: double

Function: test_sigma
Module: ExampleBit_A

G A M B I T

Fig. 5: An example dependency tree generated in the initial-
isation stage of a GAMBIT scan. Each block corresponds to a
single module function, with the red text indicating its capa-
bility. Arrows indicate resolution of dependencies of di�erent
module functions with the results of others. The functions se-
lected by the dependency resolver to provide the observables
and likelihoods requested in the ObsLikes section of the scan’s
input YAML file are shaded in green. Module functions shown
shaded in purple are nested module functions. These run
in an automatically-parallelised loop managed by a loop man-
ager function, which is shown shaded in blue. This example
is included in the GAMBIT distribution as spartan.yaml; see
Sec. 12.1 for more details. Figures like this can be generated
for any scan by following the instructions provided after calling
GAMBIT with the -d switch; see Sec. 6.1 for details.

6. Adopt the Rules specified in the initialisation file (see
Sec. 6.5), removing non-matching module functions
from the list.

7. If exactly one module function is left on the list,
resolve the quantity requested by the target function
with the capability provided by that module function.
This automatically connects the pipe of the target
function to the result of the resolving function.

8. If the resolving function was not already activated
for the scan, activate it and add its dependencies to
the dependency queue (with the resolving function
as new target function).

9. Resolve backend requirements, as described below.
10. Resolve module function options, as described below.
11. Repeat from step 3 until the dependency queue is

empty.

7.2 Evaluation order

After building up the dependency tree of module func-
tions, the dependency resolver determines the initial
runtime ordering of its chosen module functions. An
obvious minimal requirement is that if the output of

module function A is required by module function B, A
is evaluated before B. We do this by topologically sort-
ing the directed dependency tree, using graph-theoretic
methods from the Boost Graph Library18.

In most cases, the evaluation order of the observables
and likelihoods listed in the ObsLikes section (Sec. 6.4)
remains unconstrained by the topological sorting. The
dependency resolver first orders the likelihoods by es-
timating the expected evaluation time for each one,
including all dependent module functions, along with
the probability that each likelihood will invalidate a
point. (A point may be invalidated if the likelihood is
extremely close to zero, the point is unphysical, etc.)
These estimates are based on the runtime and invalida-
tion frequency of the previously calculated points, and
updated on the fly during the scan. The dependency
resolver then sorts the evaluation order of likelihoods
such that the expected average time until a point is in-
validated is minimised. In practice this means that, for
instance, the relatively fast checks for consistency of a
model with physicality constraints, such as perturbativ-
ity and the absence of tachyons, would be automatically
performed before the often time-consuming evaluation
of collider constraints. This gives a significant e�ciency
gain in a large scan, because expensive likelihoods are
not even evaluated for points found to be invalid or
su�ciently unlikely on the basis of faster likelihoods.

Observables not associated with likelihoods used to
drive a scan (cf. 6.4) are always calculated after the
likelihood components, as they do not have the power to
completely invalidate a model point. Invalid observable
calculations can still be flagged, but they will not trigger
the termination of all remaining calculations for that
point in the way that an invalid likelihood component
will.

7.3 Resolution of backend requirements

Resolving backend requirements is in some sense a lot
easier than resolving module function dependencies, in
that backend requirements cannot themselves have ex-
plicit backend requirements or dependencies, so there is
no equivalent of the dependency tree to build. However,
the ability to specify groups of backend functions from
which only one requirement must be resolved, along
with rules that apply to them (Sec. 3.1.3), especially
the declaration that backend requirements that share a
certain tag must be resolved from the same backend —
without necessarily specifying which backend — makes
backend resolution a uniquely challenging problem.

18http://www.boost.org/doc/libs/1_63_0/libs/graph/doc/

33

Dependency resolution



G AM B I T
Are Raklev & Anders Kvellestad 34

Dependency resolution


