GAMBIT Tutorial

(a Global And Modular BSM Inference Tool)

Are Raklev & Anders Kvellestad, University of Oslo

Les Houches 2023 — June 28, 2023

- 1. Global fits
- 2. GAMBIT
- 3. GAMBIT-light
- **4. GUM**
- 5. Summary

1. Global fits

The basic steps of a BSM global fit

- Choose your BSM theory and parameterisation
- Construct the joint likelihood function including observables from collider physics, dark matter, flavour physics, cosmology, +++

$$\mathcal{L} = \mathcal{L}_{collider} \mathcal{L}_{DM} \mathcal{L}_{flavor} \mathcal{L}_{EWPO} \dots$$

- Use (sophisticated) scanning techniques to:
 - Explore the model parameter space ($\theta_1, \theta_2, \theta_3, \ldots$)
 - At every point θ : calculate predictions(θ) \rightarrow evaluate joint likelihood L(θ)
- From likelihood samples, carry out frequentist or Bayesian inference (parameter estimation, model comparison, ...)

Computational challenges:

- Need **smart exploration** of parameter space
- Need fast theory calculations
- Need fast simulations of experiments (e.g. LHC)
- Need sufficiently detailed likelihoods or full statistical models

<pre>(proselection 55 mSignalLeptonses? An ChignalLeptonse 55 metabl 65 conversion_veta) (f)(signalLeptons.at(0)-opid(loxignalLeptons.at(1)-opid(lox)) (f)(signalLeptons.at(2)-opid(loxignalLeptons.at(2)-opT()o25) (signalLeptons.at(2)-opT()o25) (signalLeptons.at(2)-opt()o25</pre>
<pre>book sp = false: book mm = false: if(signallaptens.wt(2)->pid() > 0(pp = true; if(signallaptens.at(2)pid() < 0(mm = true;</pre>
if (sum_ISD)sta01 (
<pre>// The 8 jet regimes // The 8 jet regimes // The 8 jet regimes if(T < 100 & 6 pT_1) < 50 & 60 net < 100]_num58["5901"]++; if(T < 100 & 6 pT_1) < 50 & 50 net >= 100 & 60 net < 150 & 50 pD]_rum58["5560"]++; if(T < 100 & 6 pT_1) < 50 & 50 net >= 100 & 60 net < 150 & 50 net]_num58["5560"]++; if(T < 100 & 56 pT_1) < 50 & 55 net >= 100 & 60 net < 200) _num58["5560"]++; if(T < 100 & 56 pT_1) < 50 & 56 net < 100num58["5560"]++; if(T < 100 & 56 pT_1) < 50 & 56 net < 100num58["5560"]++; if(T < 100 & 56 pT_1) < 50 & 56 net < 100num58["5560"]++; if(T < 100 & 56 pT_1) < 50 & 56 net < 100num58["5560"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 100 & 66 net < 100num58["5560"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 100 & 66 net < 100 & 55 pD]_rum58["5560"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 100 & 66 net < 200)num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 100 & 66 net < 200)num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 100 & 66 net < 200)num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 100 & 66 net < 200)num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 100 & 66 net < 200)num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 100 & 66 net < 200)num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 100 & 56 net < 200)num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 100 & 56 net < 200)num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 200num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 200num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 200num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 200num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 100num58["5660"]++; if(T < 200 & 56 pT_1) < 50 & 56 net < 200num58["5660"]++; if(T < 200num58["560"]++; if(T < 200num58["560"]++</pre>

Some code infrastructure challenges:

- Need different parameter scanning algorithms
- Need model-agnostic core framework
- Need to interface *many* external physics codes
- Need massive parallelisation...
- ...which implies a need for diskless interfacing
- ...which implies a need to stop external codes from calling STOP and kill your 10,000-CPU scan... :)

Typical result: Parameter estimation, presented as **profile likelihood** and/or **posterior density** plots

[[]arxiv:1808.10465]

2. GAMBIT

GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

github.com/GambitBSM EPJC 77 (2017) 784

arXiv:1705.07908

- Extensive model database, beyond SUSY
- Fast definition of new datasets, theories
- Extensive observable/data libraries
- Plug&play scanning/physics/likelihood packages GAMBI
- Various statistical options (frequentist /Bayesian)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of: ATLAS, Belle-II, CLiC, CMS, CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON

Authors of: BubbleProfiler, Capt'n General, Contur, DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, EasyScanHEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, **WIMPSim**

Recent collaborators: P Athron, C Balázs, A Beniwal, S Bloor, T Bringmann, A Buckley, J-E Camargo-Molina, C Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J Edsjö, T Emken, A Fowlie, T Gonzalo, W Handley, J Harz, S Hoof, F Kahlhoefer, A Kvellestad, P Jackson, D Jacob, C Lin, N Mahmoudi, G Martinez, MT Prim, A Raklev, C Rogan, R Ruiz, P Scott, N Serra, P Stöcker, W. Su, A Vincent, C Weniger, M White, Y Zhang, ++

70+ participants in many experiments and numerous major theory codes

2.5 3.0

 $\log_{10}(m_{\chi}/{\rm GeV})$

Vector and fermion Higgs portal

Ret ACa)

 $\begin{array}{c} 0.0550 \hspace{.1cm} 1.0222 \hspace{.1cm} 0.0224 \hspace{.1cm} 0.0224 \hspace{.1cm} 0.0224 \hspace{.1cm} 1.0228 \hspace{.1cm} 1.0238 \\ 12\mu 9^2 \end{array}$

Flavour EFT: 2006.03489

3.5

Prof. Easily.

2.0

DM: 1808.10465

PSu May

<u>মা</u>/ম -11

-1.

2.1

2.4

2.3

Cosmo ALPs: 2205.13549

2/18/10 21

Scalar Higgs portal DM: 1705.07931

Axion-like particles: 1810.07192

NH.

are la

Right-handed neutrinos: 1908.02302

stability: 1806.11281

Dark matter EFTs: 2106.02056

EW-MSSM: 1809.02097

200

\$0

100

More axion-like particles: 2007.05517

Simplified DM, scalar/fermion: 2209.13266

Neutrinos and cosmo: 2009.03287

Are Raklev & Anders Kvellestad

-5000

10

20

30 40

 $\tan \beta$

 \blacksquare \tilde{t}_1 co-annihilation

Physics modules

Scanners

Diver, GreAT, MultiNest, PolyChord, TWalk, grid, random, postprocessor, ...

Backends

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs, FlexibleSUSY, gamLike, gm2calc, HEPLike, HiggsBounds, HiggsSignals, MicrOmegas, nulike, Pythia, SPheno, SUSYHD, SUSYHIT, SuperIso, Vevacious, MontePython, CLASS, AlterBBN, ...

Some basic technical features

• Two-level parallelisation:

- **MPI** for parameter sampling algorithm
- OpenMP for per-point physics computations
- Collection of sampling algorithms as plug-ins (scanners)
 - Coming soon: plug in your own python sampling code
- Backend system for using C, C++, Fortran, Python and Mathematica codes as runtime plug-ins for physics computations
- Run configuration through **YAML** input file
- **Dynamic dependency resolution**: order of computations not hard-coded

3. GAMBIT-light

GAMBIT-light

- GAMBIT can be used beyond particle physics
- At its core: A general tool for computationally heavy optimisation and parameter estimation tasks
- Coming soon: GAMBIT-light
 A lightweight GAMBIT without the particle physics

Physics modules

Scanners

Diver, GreAT, MultiNest, PolyChord, TWalk, grid, random, postprocessor, ...

Backends

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs, FlexibleSUSY, gamLike, gm2calc, HEPLike, HiggsBounds, HiggsSignals, MicrOmegas, nulike, Pythia, SPheno, SUSYHD, SUSYHIT, SuperIso, Vevacious, MontePython, CLASS, AlterBBN, ...

3. GUM: the GAMBIT Universal Model Machine

[arxiv:2107.00030]

GUM: the GAMBIT Universal Model Machine

[Figure from Christopher Chang]

G

- From Lagrangian to a GAMBIT global fit
- The major addition in **GAMBIT 2.0**
- Runs existing BSM tool chains to generate model-specific physics libraries
- · Generates interfaces for these libraries to the relevant Bits in GAMBIT
- Generates additional GAMBIT code (model definition, particle database additions, ...)

Are Raklev & Anders Kvellestad

GUM: the GAMBIT Universal Model Machine

Generated GAMBIT backends	FeynRules	SARAH	Usage in GAMBIT
CalcHEP	✓		Decays, cross-sections
micrOMEGAs (via CalcHEP)	✓		DM observables
Pythia (via MadGraph)	✓		Collider physics
SPheno	×		Particle mass spectra, decay widths
Vevacious	×		Vacuum stability

From FeynRules

- Any Lagrangian (including EFTs), works at tree level
- · CalcHEP
- micrOMEGAS (via CalcHEP)
- Pythia (via MadGraph)

From **SARAH**

- Renormalizable theories, one-loop
- · CalcHEP
- micrOMEGAS (via CalcHEP)
- Pythia (via MadGraph)
- SPheno
- Vevacious
- + input for existing HiggsBounds + HiggsSignals backends (via SARAH-SPheno)

Summary

Summary

- GAMBIT is an open-source tool for large-scale global fits of new theories in particle physics
- A modular and model-independent core software framework
 → GAMBIT has been used to investigate a wide range of new theories
- Recent development: GUM the GAMBIT Universal Model machine, allows the user to start from a Lagrangian model definition
- Coming soon: GAMBIT-light
- New webpage & GitHub: gambitbsm.org and github.com/GambitBSM/gambit_2.4
- GAMBIT Community results are publicly available: zenodo.org/communities/ gambit-official

All GAMBIT Community results publicly available

Results available on zenodo.cern.ch

- Parameter point samples (hdf5 files)
- GAMBIT input files for all scans
- Example plotting routines

Links at gambitbsm.org/community/ publications/

Bonus tracks

Model defined in a FeynRules/SARAH file $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}\overline{\chi} \left(i\partial \!\!\!/ - m_{\chi} \right) \chi + \frac{1}{2} \partial_{\mu} Y \partial^{\mu} Y - \frac{1}{2} m_Y^2 Y^2 \\ - \frac{g_{\chi}}{2} \overline{\chi} \chi Y - \frac{c_Y}{2} \sum_f y_f \overline{f} f Y.$

Model defined in a FeynRules/SARAH file

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \overline{\chi} \left(i \partial \!\!\!/ - m_{\chi} \right) \chi + \frac{1}{2} \partial_{\mu} Y \partial^{\mu} Y - \frac{1}{2} m_Y^2 Y^2 - \frac{g_{\chi}}{2} \overline{\chi} \chi Y - \frac{c_Y}{2} \sum_f y_f \overline{f} f Y .$$

Write a .gum file

Choose FeynRules
package: feynrules

math:

G

Model defined in a FeynRules/SARAH file

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \overline{\chi} \left(i \partial \!\!\!/ - m_{\chi} \right) \chi + \frac{1}{2} \partial_{\mu} Y \partial^{\mu} Y - \frac{1}{2} m_Y^2 Y^2 - \frac{g_{\chi}}{2} \overline{\chi} \chi Y - \frac{c_Y}{2} \sum_f y_f \overline{f} f Y.$$

Write a .gum file

math:

Choose FeynRules package: feynrules # Name of the model model: MDMSM # Model builds on the Standard Model FeynRules file base_model: SM # The Lagrangian is defined by the DM sector (LDM), # defined in MDMSM.fr, plus the SM Lagrangian (LSM) # imported from the 'base model', SM.fr Lagrangian: LDM + LSM # Make CKM matrix = identity to simplify output restriction: DiagonalCKM # PDG code of the annihilating DM candidate # in the FeynRules file wimp_candidate: 52 # Select outputs for DM physics. # Collider physics is not as important in this model. output: pythia: false calchep: true micromegas: true

G

Run GUM ./gum -f Tutorial/MDMSM.gum

Compile GAMBIT + backends

cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

25

FeynRules file seems ok; firing up a Mathematica kernel Calling FeynPules with model NDMEM		
The environment is initialized_successfully		
Model d Loading FeynRules FeynRules loaded from /home/sanjay Loading model MDMSM in FeynRules, piggybacking off of 9 Nodel MDMSM loaded successfully, with model name Fermio	//GAMBIT-2.0.0-alpha-1/gum/contrib/FeynRules. M on DM with scalar mediator.	
$\mathcal{L} = \mathcal{L}_{SM} \begin{bmatrix} \mathcal{L}_{SM} \\ Found \\ restriction \\ file \\ at \\ checking the Lagrangian \\ you \\ have specified the following of the structure of the s$	oha-1/gum/contrib/FeynRules/Models/SM/DiagonalCKM.rst owing: LDM + LSM	
$= \frac{9\chi}{2} \overline{\chi}$ Checking the model is Hermitian Your Lagrangian is F Checking kinetic and mass terms are properly diagonalis Kinetic terms are diagonal Mass terms are diagonal.	Mermitian. sed . All good.	l FeynRules file
Extracting particles from FeynRules model. Found 18 particle sets. Extracting external parameters from FeynRules model. Found 3 parameter blocks.		DM sector (LDM), Lagrangian (LSM) M.fr
Writing CalcHEP output. Setting Feynman Gauge. CalcHEP files written. WSTP link closed successfully.		plify output
Finished extracting parameters from feynrules. CalcHEP files moved to GAMBIT Backends directory. CalcHEP model files cleaned!		didate
Finished running external codes Now attempting to write proposed GAMBIT code.		t in this model.
The following particles (by PDG code) are missing from/contig/particle_database.yaml.	the particle database: [52, 99902]. GUM is now adding them to	
Adding new model MDMSM to GAMBIT. Writing new spectrum, MDMSM_spectrum Writing CalcHEP module functions for DecayBit Writing new module functions for DarkBit Writing micrOMEGAs interface for DarkBit. Writing basic container SpecBit interface		
Now putting the new code into GAMBIT. File/Models/include/gambit/Models/models/MDMSM.hpp s File/Models/include/gambit/Models/SimpleSpectra/MDMS File/Models/include/gambit/Models/SpectrumContents/F File/SpecBit/src/SpecBit_MDMSM.cpp successfully created File/SpecBit/include/gambit/SpecBit/SpecBit_moldal File/SpecBit/include/gambit/SpecBit/SpecBit_rollcal File/DecayBit/src/DecayBit.cpp successfully amended. File/DecayBit/src/DecayBit.cpp successfully amended. File/DecayBit/src/DecayBit.cpp successfully amended. File/DecayBit/src/DecayBit.cpp successfully amended. File/DecayBit/src/DecayBit.cpp successfully amended. File/DecayBit/src/DecayBit.cpp successfully amended. File/DecayBit/src/DecayBit.cpp successfully amended. File/DarkBit/include/gambit/DarkBit/DarkBit_rollcall File/DarkBit/include/gambit/DarkBit/DarkBit_rollcall File/DarkBit/include/gambit/DarkBit/DarkBit_rollcall File/DarkBit/include/gambit/DarkBit/DarkBit_rollcall File/DarkBit/include/gambit/DarkBit/DarkBit_rollcall File/DarkBit/include/gambit/DarkBit/DarkBit_rollcall File/DarkBit/src/MDMSM.cpp successfully created. File/DarkBit/include/gambit/DarkBit/DarkBit_rollcall File/DarkBit/include/gambit/DarkBit/DarkBit_rollcall File/DarkBit/include/gambit/DarkBit/DarkBit_rollcall File/DarkBit/include/gambit/DarkBit/DarkBit_rollcall File/DarkBit/src/MDMSM.cpp successfully created. File/Backends/src/frontends/CalcHEP_3_6_27.cpp succesed File/Backends/src/frontends/CalcHEP_3_6_27.cpp succesed File/Backends/src/frontends/CalcHEP_3_6_27.cpp succesed File/Backends/src/frontends/CalcHEP_3_6_27.cpp succesed File/Backends/src/frontends/CalcHEP_3_6_27.cpp succesed File/Backends/src/frontends/CalcHEP_3_6_27.cpp succesed File/Backends/src/frontends/CalcHEP_3_6_27.cpp succesed File/Backends/src/frontends/CalcHEP_3_6_27.cpp succesed File/Backends/src/frontends/CalcHEP_3_6_27.cpp succesed File/Backends/src/frontends/CalcHEP_3_6_27.cpp	Auccessfully created. Ally created. SMSimpleSpec.hpp successfully created. Ared. Ared. All.hpp successfully created. All.hpp successfully amended. All.hpp successfully amended.	
File/Backends/include/gambit/Backends/frontends/Calc akley & Anders Kyellestad	:HEP 3 6 27.hpp successfully amended.	$\mathbf{G} \mathbf{A} \mathbf{M} \mathbf{B} \mathbf{I} \mathbf{T} \mathbf{L}$

Model defined in a FeynRules/SARAH file

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \overline{\chi} \left(i \partial \!\!\!/ - m_{\chi} \right) \chi + \frac{1}{2} \partial_{\mu} Y \partial^{\mu} Y - \frac{1}{2} m_Y^2 Y^2 - \frac{g_{\chi}}{2} \overline{\chi} \chi Y - \frac{c_Y}{2} \sum_f y_f \overline{f} f Y.$$

Write a .gum file

math:

Choose FeynRules package: feynrules # Name of the model model: MDMSM # Model builds on the Standard Model FeynRules file base_model: SM # The Lagrangian is defined by the DM sector (LDM), # defined in MDMSM.fr, plus the SM Lagrangian (LSM) # imported from the 'base model', SM.fr Lagrangian: LDM + LSM # Make CKM matrix = identity to simplify output restriction: DiagonalCKM # PDG code of the annihilating DM candidate # in the FeynRules file wimp_candidate: 52 # Select outputs for DM physics. # Collider physics is not as important in this model. output: pythia: false calchep: true micromegas: true

G

Run GUM ./gum -f Tutorial/MDMSM.gum

Compile GAMBIT + backends

cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

Model defined in a FeynRules/SARAH file

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \overline{\chi} \left(i \partial \!\!\!/ - m_{\chi} \right) \chi + \frac{1}{2} \partial_{\mu} Y \partial^{\mu} Y - \frac{1}{2} m_Y^2 Y^2 - \frac{g_{\chi}}{2} \overline{\chi} \chi Y - \frac{c_Y}{2} \sum_f y_f \overline{f} f Y .$$

Write a .gum file math: # Choose FeynRules package: feynrules

- # Name of the model model: MDMSM # Model builds on the Standard Model FeynRules file base_model: SM # The Lagrangian is defined by the DM sector (LDM), # defined in MDMSM.fr, plus the SM Lagrangian (LSM)
- # imported from the 'base model', SM.fr

Lagrangian: LDM + LSM

- # Make CKM matrix = identity to simplify output
 restriction: DiagonalCKM
- # PDG code of the annihilating DM candidate # in the FeynRules file wimp_candidate: 52
- # Select outputs for DM physics. # Collider physics is not as important in this model. output: pythia: false calchep: true micromegas: true

G

Run GUM ./gum -f Tutorial/MDMSM.gum

Compile GAMBIT + backends

cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

Run GAMBIT!

- **4D** scan (m_X, m_Y, g_X, c_Y)
- Relic abundance (as upper bound) [micrOMEGAs]
- Direct detection: XENON1T 2018, LUX 2016 [micrOMEGAs, DDCalc]
- Indirect detection: Fermi-LAT dwarf galaxies [CalcHEP, DarkSUSY, gamLike]
 - **~11 hours on 4-core laptop**, sampling ~300k parameter points [Diver]

- · Same model
- 1D scan of m_Y
- $m_X = 1$ GeV, $g_X = 1$, $c_Y = 1$
- Collider: ATLAS 2lep+jets+MET, 139 fb⁻¹ [Pythia, ColliderBit]
- Light m_Y disfavoured, but can easily be accommodated in the larger 4D parameter space

Are Raklev & Anders Kvellestad

Understanding the full implications of [experimental] searches requires the interpretation of the experimental results in the context of many more theoretical models than are currently explored at the time of publication.

HEP Software Foundation [arxiv:1712.06982]

See also:

- Publishing statistical models: Getting the most out of particle physics experiments [arxiv:2109.04981]
- Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2
 [arxiv:2003.07868]
- Simple and statistically sound strategies for analysing physical theories [arxiv:2012.09874]

Example: ColliderBit

Full Poisson likelihood from fast MC simulation of searches

- Focus on speed
- MC generation: Pythia8 parallelised with OpenMP
 + other speed tweaks
- Detector simulation: Fast simulation based on 4-vector smearing
- Cross-sections: LO+LL from Pythia8
 Coming soon: fast NLO cross-sections for SUSY
- Analysis system: Event-level, independent of simulation

Extensive list of ATLAS/CMS searches

- ~40 searches, most at 13 TeV
- mainly SUSY + some monojet DM searches
- · Likelihoods:
 - marginalise/profile correlated bkg uncertainties; or
 - use «best expected» SR
- ColliderBit Solo (coming soon):
 - standalone tool
 - only the analyses + likelihood evaluation (fast)
 - takes HepMC events as input

[arXiv:1705.07919]

Are Raklev & Anders Kvellestad

Dependency resolution

- Basic building blocks: module functions
- A physics module: a collection of module functions related to the same physics topic
- Each module function has a single capability (what it calculates)
- A module function can have dependencies on the results of other module functions
- A module function can declare which models it can work with
- GAMBIT determines which module functions should be run in which order for a given scan (dependency resolution)

```
void function_name(double &result)
{
    ...
    result = ... // something useful
}
```


Dependency resolution

Are Raklev & Anders Kvellestad

Dependency resolution

