Higgs Theory

Raoul Röntsch, Stephen Jones

Les Houches Session I 13 June 2023

1

Outline

- Lots of progress over last two years:
 - ≻ Higher-order predictions (add one "N") calculated.
 - Other approximations / issues being addressed.
- Gluon fusion:
 - ≻ Hjj at NLO using FTApprox.
 - > Top mass contribution; impact of aN3LO pdfs; mass scheme uncertainties.
- VBF:
 - ≻ NLL matching.
 - > Non-factorizable NNLO corrections; EW Hjj production in PS.
- *VH*
 - ≻ N3LO cross sections; VH+j @ NNLO; VH (+ decay) NNLO+PS.
 - \succ gg → ZH.
- ttH
 - ➤ NNLO corrections.

 $N^{3}LO_{HTL}$ - use iHixs2 Dulat, Lazopoulos, Mistlberger 18 (+ n3loxs Baglio, Duhr, Mistlberger, Szafron 22 ?) $\delta(1/m_{t})$ - NNLO QCD w/ m_{T} use Czakon et al. 21 (mass-scheme uncert. estimate?) $\delta(t, b, c)$ - Not yet in literature ($m_{q} \sim 0, m_{b} \& m_{t}$) (asked Czakon et al. if timeline available) $\delta(EW)$ - gg-channel light-quark contributions use Becchetti et al 20. (asked for timeline for other channels) $\delta(PDF - TH)$ - estimate with individual sets (PDF4LHC21 has no NLO set), separate comparison to $aN^{3}LO$

Run 3 update to ggF WG recommendation now underway, both TH conveners here and happy for input/feedback

Previous procedure, take half the difference of NNLO with (N)NLO PDFs:

$$\delta(\text{PDF} - \text{TH})_{\text{NNLO}} = \pm \frac{1}{2} |\sigma_{\text{NNLO}}^{(2)} - \sigma_{\text{NLO}}^{(2)}| \sim \pm 1.2 - 1.4\% \text{ @ 13 TeV}$$

Can now compute:

$$\Delta_{1} = |\sigma_{aN^{3}LO}^{(3)} - \sigma_{NNLO}^{(3)}| \sim 5.3 \%$$

$$\Delta_{2} = |\sigma_{aN^{3}LO}^{(3)} - \sigma_{NNLO}^{(2)}| \sim 2 \%$$

Complications: No NLO set in PDF4LHC21, aN³LO includes some MHOU in errors already, need aN³LO input from other groups and input on procedure

GENEVA Refinements to NNLO+PS matching Improved treatment of splitting functions Disentangling μ_R , μ_F uncertainties Handling time-like logs (improves pert. converge.) Also studied to HH @ NNLO+PS in HTL

Alioli, Billis, Broggio, Gavardi, Kallweit, Lim, Marinelli, Nagara, Napoletano 23 (x 2)

RadISH N3LL/N3LL' + NNLO fiducial predictions TH uncertainty in resummation region 5-7% Re, Rottoli, Torrielli 21

Important to continue addressing PS/matching uncertainties which are large/ dominant sources of TH uncertainty for many Higgs processes

top(OS)

Updates since last Les Houches:

1) Mass scheme uncertainties known at NLO

Bonciani, et al. 22

- 2) Boosted Higgs note needs an update
 - Mixed QCD-EW Corrections

Parton Shower updates for HJ, HJJ

- HJ mass scheme uncertainties
- All channels contributing

3) Progress towards NNLO w/ m_T and N3LO HTL

Henn, Lim, Bobadilla 23; Gehrmann, Jakubčík, Mella, Syrrakos, Tancredi 23

Higgs + 2 Jets @ NLO FTApprox

Know $gg \rightarrow Hggg @$ 1-loop with m_T 2300s/ps to <1s/ps (OTTER) Lang Chen, Huss, Jones, Kerner, Lang, Lindert, Zhang 21

- top(OS)/top(\overline{MS}

Could be interesting for estimating ggF background to VBF?

NLO

Dip

 Les Houches 2019 study published:
 [2105.11399]

A comparative study of Higgs boson production from vector-boson fusion

A. Buckley,¹ X. Chen,^{2, 3, 4} J. Cruz-Martinez,⁵ S. Ferrario Ravasio,^{6, 7} T. Gehrmann,² E.W.N. Glover,⁷ S. Höche,⁸ A. Huss,⁹ J. Huston,¹⁰ J. M. Lindert,¹¹ S. Plätzer,¹² and M. Schönherr⁷

- Extensive study of:
 - NNLO and NLO+PS results (NNLOJET, HERWIG, PYTHIA, SHERPA, POWHEG)
 - Different PS approaches (additive/multiplicative matching)
 - ✓ Dependence on jet radius
 - ✓ High-pT region
 - Discrimination between VBF, VH and ggF production modes
- Generally good agreement between NNLO and NLO+PS.
- Global jet veto preferable to central jet veto.

- A lot of activity in last ~ 2 years!
- NNLO results beyond factorization approximation:
 - Leading eikonal approximation (two-loop): non-factorizable effects: -0.5% to -1% [Liu, Penin, Melnikov, '19]
 - > Real-real and real-virtual results negligible.

Next-to-leading eikonal corrections: -15% to -30% of leading eikonal approximation.

[Long, Melnikov, Quarroz '23]

Since the non-factorizable contribution itself is just O(1) percent of the total WBF cross section, the remaining uncertainties stemming from the imprecise knowledge of the two-loop virtual amplitude are irrelevant."

[VBF Subgroup Workshop, Nov '22]

[Asteriadis, Brønnum-Hansen, Melnikov '23]

• NNLO including Higgs decay

[Asteriadis, Caola, Melnikov, RR, '21]

- > NNLO results with $H \rightarrow b\overline{b}$ decay:
 - Scale uncertainty and perturbative convergence better than for stable Higgs.
 - Impact of decay ~ 3% at NNLO comparable with size of NNLO corrections.
 - Effects milder with $H \rightarrow WW \rightarrow$ leptons, can be captured by overall k-factor.

• PS results at NLL:

[Van Beekveld, Ferrario Ravasio, '23]

- NLL-accurate resummation for global and non-global observables in VBF.
- Two-jet observables: mild dependence on NLL shower, agreement with LL shower.
- Three-jet observables: discrepancies as high as 10% between LL and NLL showers.

• PS results beyond the VBF approximation:

- First PS prediction using EW H+jj production in both t- and s-channel.
 [Chen, Figy, Plätzer '21]
- ≻ H+2,3 jets at NLO; H+4 jets at LO
- > Matching and merging in Herwig7.
- Good agreement between matching and merging for 2-jet observables.
- Disagreements as high as 20% for third-jet observables.
- NLO-QCD and NLO-EW matched to PS in POWHEG-BOX [Jäger, Scheller, '22]

www

- Non-perturbative soft QCD effects:
 - > Not clear how to quantify uncertainties.
 - Variation of MPI and color-reconnection parameters : uncertainty in third-jet observables comparable to perturbative uncertainties.

[Bittrich et al., '21]

- Matching and merging in PYTHIA
 - > Comparison of DGLAP and dipole recoil showers with antenna shower in VINCIA.
 - At LO, large discrepancies between DGLAP and dipole/antenna showers in observables sensitive to additional radiation.
 - Discrepancies persist at NLO for observables sensitive to > 3 jet multiplicities.
 - ➢ Higher multiplicity matrix elements included through CKKW-L scheme.

[Höche et al., '21]

• Inclusive cross section computed to N3LO

[Baglio, Duhr, Mistlberger, Szafron '22]

- Scale uncertainties < 0.5%.
- Scale uncertainties similar to NNLO and N3LO results lie outside of NNLO scale variations.
- Error budget dominated by PDF and strong coupling determination.
- Publicly available in n3loxs.

Process	$\sigma^{\rm N^3LO}$ [pb]	$\delta(\text{PDF})$ [%]	$\delta(\text{PDF} + \alpha_S) \ [\%]$	$\delta(\text{PDF-TH})$ [%]
W^+H	0.884	± 1.59	± 1.80	± 1.45
W^-H	0.559	± 1.76	± 1.92	± 1.63
ZH	0.786	± 1.77	± 1.95	± 1.53

- NLO corrections to gg → ZH computed [Chen et al., '22]
 - Two-loop amplitudes computed exactly by [Chen et al '20]
 - > Two-loop amplitudes also available in several expansions*.
 - > Now combined and used for pheno study.
 - Very large k-factors ~ 2.
 - Results consistent with
 [Wang, Xu, Xu, Wang '21] using small
 m_z and m_H expansion.
 - > Top mass scheme dependence also large.

• NNLO matched to PS using MINNLOPS

[Zanoli et al, '21]

- NNLO+PS accuracy for $H \rightarrow b\overline{b}$ decay in WH production
- Increases cross section relative to MINLO' by ~ 5% (inclusive and with fiducial cuts).
- Scale uncertainties reduced using MINNLOPS,
- MINNLOPS result does not lie in correlated scale uncertainty band of MINLO' – uncorrelated production and decay scale uncertainties preferable.
- Effect of jet definition also studied (using massive b-quarks in shower allows use of anti-kT)

• VH+j production computed to NNLO QCD

[Gauld et al, '22]

- Inclusive production in WH+j: NNLO corrections ~ percent and constant across distributions
- Inclusive production in *ZH*+*j*: shape distortion from gluon-induced heavy quark loops.
- These increase the inclusive NNLO cross section by $\sim 15\%$.
- Larger corrections in exclusive production.

- $H \rightarrow b\overline{b}$ decay first observed in *VH* production.
- NNLO results for $VH(\rightarrow b\overline{b})$ employed flavour-kT algorithm. [Banf
 - [Banfi, Salam, Zanderighi '07]

- Significant effects from jet algorithm:
 - → $H \rightarrow b\overline{b}$ with massive b-quarks & anti-kT vs. $H \rightarrow b\overline{b}$ massless with flavor kT

• A natural testing-ground for new generation of flavor-sensitive jet algorithms?

HH/ZH Expansions

Several 2-loop $2 \rightarrow 2$ amplitudes known in expansions that cover the phase-space

Small-p_T / Small-tBonciani, Degrassi, Giardino, Gröber 18; Davies, Mishima, Schönwald, Steinhauser 23High-energyDavies, Mishima, Steinhauser, Wellmann 18+ combining expansionsBellafronte, Degrassi, Giardino, Gröber, Vitti 22

Will be interesting to see if this can eventually be used to produce approximate NNLO (3-loop) results for gluon induced processes

*t*t*H* production

 $ab \rightarrow t\bar{t}H + X$, off-diagonal contributions ($qg, qq, qq', q\bar{q}' \quad (q \neq q')$) obtained @ NNLO Catani, Fabre, Grazzini, Kallweit 21

 $a\overline{a} \rightarrow t\overline{t}H + X$, diagonal contributions ($a = q, \overline{q}, g$) @NNLO with soft Higgs approx. Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini 23

Obtained ı	using q	_T subtract	ion method
Obtained	using 9	roublidet	

	$\sqrt{s} = 13 \mathrm{TeV}$		$\sqrt{s} = 100 \mathrm{TeV}$	
σ [fb]	gg	q ar q	gg	q ar q
$\sigma_{ m LO}$	261.58	129.47	23055	2323.7
$\Delta \sigma_{\rm NLO,H}$	88.62	7.826	8205	217.0
$\Delta \sigma_{ m NLO,H} _{ m soft}$	61.98	7.413	5612	206.0
$\Delta \sigma_{\rm NNLO,H} _{\rm soft}$	-2.980(3)	2.622(0)	-239.4(4)	65.45(1)

2-loop amplitudes for diagonal contributions approximated using soft H factorisation formula extended to NNLO @NLO full gg/qq result ~40/5% larger than soft approx @NNLO whole correction is 1% of LO

Conclusions

- Remarkable progress from all directions congratulations!
- No time to mention:
 - ≻ Higgs decay
 - > EFT / anomalous couplings in Higgs sector
 - ➤ Offshell Higgs
 - ≻ ...
- What we have learned tells us what we still don't understand many interesting things to explore!

Comments & suggestions for LH studies are welcome!

Great to be back at Les Houches!

