Machine Learning Some direction for LH BSM 2023

Gregor Kasiecka (<u>gregor.kasieczka@uni-hamburg.de</u>) - Universtität Hamburg Andrea Wulzer (andrea.wulzer@cern.ch) - ICREA

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Agnostic searches for new physics

We search for a needle in the haystack, knowing (more or less) how the haystack looks like (the SM), but **not knowing** how the needle (BSM) looks like.

Lots of work done, also by many people here. Two main threads: Anomaly detection:

- define some notion of "rarity" (e.g. autoencoders)
 - or "over-density" (e.g. weak supervision)
- select anomalous events and search for BSM in there

Goodness of fit:

- inspect all events searching for statistically significant departures from SM
- can make stronger or weaker assumption on BSM nature and SM knowledge

What we could discuss:

Mapping the space of agnostic searches: Define Benchmarks: having in mind possible real applications; Strategies for assessing coverage beyond individual benchmarks; A unifying view of AD & GOF; Sharing of results

Use cases Beyond BSM: e.g., spotting out mistakes/differences in generators; validating generative models; data quality monitoring. Comparison with traditional methods and/or cutting edge advances in other fields; other

Likelihood Learning

Aiming at "optimal" BSM sensitivity by precision. The SM EFT at the LHC and HL-LHC as an ideal use case for these ideas. -1.5-1.00.0 β_1 0.51.01.5 -1.00.0 β_1 0.51.01.5 β_2

Also on this topic, much activity by this group Several proposals, based on the "likelihood-ratio trick". Towards automation, for extensive deployment at LHC

What we could discuss:

Comparing performances: assessing also validation tools, uncertainties, robustness, simplicity, perspective for automation of different proposals.

Towards real analyses: one CSM result using these ideas. What is (or should be) coming next? What is missing from the theory side?

In-situ generative models: Are there other uses of learning background distributions (either as likelihood or as sample-able generativer model) from data (also related to anomalies)

Generative Models

Active use of generative models across for e.g. detector simulation and event generation

What we could discuss:

Other applications of generative models

Inclusion of physical symmetries and other constraints in generative architectures

Specifically: What can be done with diffusion models?

Physical Symmetries

For tagging algorithms, see benefit from including physical symmetries (primarily Lorentz group)

What we could discuss:

Other ways of including physics information: decay chains, IRC safety, ...

Exploration of large language models

ChatGPT and similar models see increased attention in many domains.

Are there serious topics where these methods can be a game-changer in our physics

What we could discuss: Direct LLM research use in fundamental physics

Automated text and code generation

LLM integration in traditional workflows

Symbolic computation

Prompt Engineering

