SM phenomenology experimental review

Paolo Azzurri, Joey Huston

Les Houches - Physics at TeV Colliders - 2023

Outlook

- W mass
- common cross section for VBF/VBS
- VBF Higgs comparisons
- PDFs
- alphaS

W mass

- (non-perturbative) modeling
- new ideas/methods (asymmetry)
- future determination at e+e-
- theory agnostic determinations (Tanmay Sarkar)

theory agnostic W mass fit

Fit production model with the data

$\frac{d\sigma}{d\Phi} \propto BW(Q) \times \frac{d^2\sigma}{dy \, dq_T} \cdot (1 + \varepsilon_{UL}(y, q_T)) \times (1 + \cos \theta^2 + \sum A_i \cdot (1 + \varepsilon_i(y, q_T)) \times P_i(\theta, \varphi))$

- BW, $d^2\sigma/dy dq_T$ and A_i with possibly the best F.O. + logarithmic accuracy
- $\varepsilon_{UL}(y, q_T)$ and $\varepsilon_i(y, q_T)$ parametrize the missing higher orders
 - to be profiled from W data only
- A template-based fit of the data will be needed anyway
 - Templates of reco-level (pT,eta) built from samples of MC simulated events
 - Using an event-by-event reweighting according to Eq. (1) to build the templates. Use the pre-FSR lepton kinematics from the MC record to define Φ
- QED shower effects accounted for by MC simulation

⇒ Tanmay Sarkar <tanmay.sarkar@cern.ch>

future W mass @e+e-

common cross section for VBF/VBS

Current situation ; Disparate signal definitions (parton & particle level) Examples for VBF (same/ worse situation for VBS)

TABLE I.	Summary of	VBF Z	production	cross	sections	measured	at the	LHC is	n the	lljj	final	state v	with o	different	m_{jj}	definitions	and
different pro	oton collision	energies	. All quoted	d cross	s section	s are for a	single	lepton	flavo	r.					55		

m_{jj} cut	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8$ TeV	$\sqrt{s} = 13 \text{ TeV}$
120 GeV	$154\pm58~{ m fb}$	174 ± 43 fb	$534\pm60~{ m fb}$
	(CMS Collaboration, 2013b)	(CMS Collaboration, 2015d)	(CMS Collaboration, 2018a)
250 GeV		$54.7 \pm 11.2 { m fb}$	$119 \pm 26 {\rm fb}$
		(ATLAS Collaboration, 2014e)	(ATLAS Collaboration, 2017c
1 TeV		$10.7 \pm 2.1 { m fb}$	$37.4 \pm 6.5 \mathrm{fb}$
		(ATLAS Collaboration, 2014e)	(ATLAS Collaboration, 2021)

TABLE II	. Summary of VBF W	production cross	sections measur	ed at the LI	IC in the	$\ell \nu$ jj final	state with	different m_i	<i>i</i> definitions and
different p	roton collision energies.	All cross section	s are for a singl	e lepton flav	or.				

m_{jj} cut	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8$ TeV	$\sqrt{s} = 13 \text{ TeV}$
120 GeV			$6.23 \pm 0.62 \text{ pb}$
500 GeV	2.76 ± 0.67 pb	2.89 ± 0.51 pb	(CMS Collaboration, 2020b)
	(ATLAS Collaboration, 2017g)	(ATLAS Collaboration, 2017g)	
1 TeV		0.42 ± 0.10 pb (CMS Collaboration, 2016)	

common cross section for VBF/VBS

Initial efforts to agree on common definitions in the context of the LHC EW WG3 (to be part of a multiboson YR) ... did not converge

$p_{ m T}>25{ m GeV}$ and $ \eta <2.5$
$p_{ m T}>25{ m GeV}$ and $ y <4.5$
$N_\ell=2$ (same flavour, opposite charge), $m_{\ell\ell}>60{ m GeV}$
$\mid N_\ell = 1$
$\Delta R_{\min}(\ell,j) > 0.4$
$N_{ m jets} \ge 2, \ p_{ m T}^{j1} > 50{ m GeV}, \ p_{ m T}^{j2} > 30{ m GeV}$

"Tight" electroweak region selection						
Final state	Object	Selection requirements				
All	Charged leptons	$ \eta < 2.5$				
	Photons	$p_{ m T}>$ 20 GeV, $ \eta <$ 2.4, $\Delta R(\gamma,\ell)>$ 0.4				
	Jets	$p_{ m T}>$ 30 GeV, $ \eta <$ 5.0, $\Delta R({ m j},\ell)>$ 0.4 $\Delta R({ m j},\gamma)>$ 0.4				
	Dijet	$m_{ m jj}>500~{ m GeV},~ \Delta\eta_{ m jj} >2.5$				
	Fit region	$m_{ m jj}$: [500, 800, 1200, 1600, 2000, ∞] GeV				
	Fu	Ily leptonic final states				
$W^{\pm}W^{\pm}$ /	Charged leptons	$p_{T}^{1,2} > 20 \text{ GeV}$				
w±w∓		1				
	Kinematic	$p_{\mathrm{T}}^{\mathrm{miss}} > 20 \; \mathrm{GeV}$, $m_{\ell\ell} > 20 \; \mathrm{GeV}$				
$W^{\pm}Z$	Charged leptons	$p_{\mathrm{T}}^{z_1,z_2,w} > 20/10/20 \; \mathrm{GeV}$				
	Kinematic	$p_{\mathrm{T}}^{\mathrm{ar{m}iss}}$ > 20 GeV, $m_{3\ell}$ > 100 GeV, $ m_{\ell\ell}-m_{\mathrm{Z}} $ < 15 GeV				
ZZ	Charged leptons	$p_{\rm T}^{1,2,3,4} > 20/10/5/5~{ m GeV}$				
	Kinematic	$m_{\ell^+\ell^-}^- > 4 \text{ GeV}, m_{4\ell} > 180 \text{ GeV}, m_{\ell\ell} - m_{\rm Z} < 15 \text{ GeV}$				
	Lepton	ic and photonic final states				
$\mathrm{Z}\gamma$	Charged leptons	$p_{\rm T}^{1,2} > 20 \; { m GeV}$				
	Kinematic	$ \dot{m}_{\ell\ell} - m_{ m Z} < 15~{ m GeV}$				
$W^{\pm}\gamma$	Charged leptons	$p_{\mathrm{T}}^{1} > 30 \; \mathrm{GeV}$				
	Kinematic	$ ho_{ m T}^{ m miss}>$ 30 GeV, $m_{ m T}^{ m W}>$ 30 GeV				
"Looser" VVjj region selection						
All	Dijet	$m_{ m jj}>$ 300 GeV, $ \Delta\eta_{ m jj} >1.5$				
	Fit region	$m_{ m jj}$: [300, 400, 500, 800, 1200, 1600, 2000, ∞] GeV				

		8					
Final state	Object	Selection requirements					
WW VBS /	leptons	p_{T} >20 GeV, $ \eta $ < 2.5, same-sign					
WWjj	jets	$p_{{ m T},{ m j}1}$ >30 GeV, $p_{{ m T},{ m j}1}$ >30 GeV, $ \eta $ < 4.5,					
		$\Delta\eta_{jj}>$ 2.5					
same-sign	final BSM region	m_{jj} : 0.25-0.5 TeV, $>$ 0.5 TeV					
$Z\gamma$ VBS /	leptons	$p_{ m T}>$ 35, $ \eta <2.5$					
$Z\gamma jj$	photons	E_{T} >75, $ \eta < 2.5, \Delta \mathrm{R}(\ell/j,\gamma) > 0.4$					
	bosons	$\Delta(m_Z,m_{\ell\ell})$ <10 GeV					
	jets	$p_{{ m T},{ m j}1}$ >30 GeV, $p_{{ m T},{ m j}1}$ >30 GeV, $ \eta $ < 4.5,					
		$\Delta \eta_{jj} > 3.0$					
	final BSM region	m_{jj} >0.5 TeV					
WZ VBS /	leptons	$p_{ m T,lead}$ >25 GeV, $p_{ m T}$ >15 GeV, $ \eta < 2.5$					
	neutrinos	$(\sum \overrightarrow{p}_{\nu}) > 30 \mathrm{GeV}$					
	jets	$p_{{ m T},j1}$ >55 GeV, $p_{{ m T},j1}$ >40 GeV, $ \eta < 4.5$					
	bosons	$\Delta(m_Z, m_{\ell\ell})$ <25 GeV					
	further jets	$p_{\rm T} > 25$ GeV, none in interval between leptons					
	event	$p_{ m T}^{ m balance} < 0.15$					
	final BSM region	m_{WZ} : 0.8-1.0 TeV, >1.0 TeV					
ZZ VBS /	leptons	p_{T} >25 / 15 / 10 GeV (leading leptons), $ \eta < 2.5$					
ZZjj	jets	$p_{{ m T},{ m j}1}$ >55 GeV, $p_{{ m T},{ m j}1}$ >40 GeV, $ \eta < 4.5$					
	bosons	$\Delta(m_Z, m_{\ell\ell})$ <25 GeV					
	further jets	$p_{\rm T}$ >25 GeV, none in interval between leptons					
	event	$p_{\mathrm{T}}^{\mathrm{balance}}$ <0.15					
	final BSM region	m_{WZ} : 0.8-1.0 TeV, >1.0 TeV					

draft proposals

common cross section for VBF/VBS

Yacine Haddad, Mathieu Pellen, Gaetano Barone, PA, ...

Focus on particle-level definitions . Use dredded leptons, jets , isolated photons

For each defined region measure

•1) QCD+EW cross section
•2) Pure EW cross section (-interference)
•2') Pure QCD
•3) EW - s-channel

1D bins of

- Mjj > *120,250,50*0,1000,2000,5000
- pT(I/II,A) > 0, 50,200,500
- DeltaPhijj > -2.5, -2, -1, 0, 1, 2, 2.5
- |D yjj| > 0, 2.5, 5

complete and iron out details \Rightarrow back to previous discussions with Lorenzo Viliani, Jonas Lindert, Dag Gilbert, Guillelmo Gomez-Ceballos,, Narei Lorenzo,, Marco Zaro ... \Rightarrow LH2023 accord ?

2105.11399

VBF Higgs comparisons

35.9 fb⁻¹ (13 TeV)

CMS SMP-17-011

Charged hadrons are here

What determines the size of PDF uncertainties?

FIG. 2. Comparison of the PDFs at Q = 100 GeV. The PDFs shown are the N2LO sets of NNPDF4.0, CT18, MSHT20, ABMP16 with $\alpha_s(M_Z) = 0.118$, and ATLASpdf21. The ratio to the NNPDF4.0 central value and the relative 1σ uncertainty are shown for the gluon g, singlet Σ , total strangeness $s^+ = s + \bar{s}$, total charm $c^+ = c + \bar{c}$, up valence u^V and down valence d^V PDFs.

Figures from Snowmass'2021 whitepaper "Proton structure at the precision frontier", arXiv:2203.13923

P. Nadolsky, PhysTeV 2023 workshop

Tolerances explained by epistemic uncertainties

Relative PDF uncertainties on the *gg* luminosity at 14 TeV in three PDF4LHC21 fits to the **identical** reduced global data set

While the fitted data sets are identical or similar in several such analyses, the differences in uncertainties can be explained by methodological choices adopted by the PDF fitting groups.

NNPDF3.1' and especially 4.0 (based on the NN's+ MC technique) tend to give smaller nominal uncertainties in data-constrained regions than CT18 or MSHT20

Epistemic uncertainties explain many such differences

Details in arXiv:2203.05506, arXiv:2205.10444

L₂ sensitivity: a new and powerful tool

$$\begin{split} S_{f,L2}^{\rm H}(E) &\equiv \frac{\vec{\nabla}\chi_E^2 \cdot \vec{\nabla}f}{\Delta^{\rm H}f} & 2^{\rm nd} \text{ Lagrangian technique} \\ &= \left(\Delta^{\rm H}\chi_E^2\right) \ C^{\rm H}(f,\chi_E^2) & \xrightarrow{2^{\rm nd}} \text{ Lagrangian technique} \\ &\longrightarrow \text{ talk this week by} \\ & \text{Pavel} \end{split}$$

- C^H represents the cosine of the correlation angle between PDF flavor f (or any defined quantity) and experimental χ^2

The importance of an experiment for a particular PDF depends not only on the correlation of the cross section with that PDF, but the degree to which the cross section can determine that PDF.

Typically used with Hessian, but can also be defined for the MC PDF approach

P. Nadolsky, PhysTeV 2023 workshop

decorrelation

2023-06-15

PDF wish list for systematic uncertainties A proposal

- 1. More complete representations for experimental likelihoods that do not need reverse engineering
- 2. Agreed-upon nomenclature for leading syst. sources
- 3. Is reducing dimensionality of published correlation matrices advisable? Is their a standard for it? E.g., fewer nuisance parameters; collect less relevant/certain nuisance parameters into one uncorrelated error; etc.
- 4. Mathematical consistency of covariance/correlation matrices (see Z. Kassabov et al.)
- 5. How do different implementations of syst. errors affect pulls on PDFs? L_2 sensitivities to nuisance parameters

6. ...

Final remarks

Epistemic uncertainty (due to parametrization, methodology, parametrization/NN architecture, smoothness, data tensions, model for syst. errors, ...) is increasingly important in NNLO global fits as experimental and theoretical uncertainties decrease

Nominal PDF uncertainties in high-stake measurements (ATLAS W mass, Higgs cross sections...) thus should be tested for *control of tensions* and *robustness of sampling over acceptable methodologies*.

Smoothness of Hessian and NN PDFs is another such aspect associated with the prior that should be explored.

Such tests can be done outside of the PDF fits.

Tools for such studies exist using published PDFs and codes: L_2 sensitivities and hopscotch scans.

This is also necessary for combination of PDFs including data correlations [LHC EW, Jet & Vector boson WGs, <u>https://tinyurl.com/4wcnd8xn</u>; <u>https://tinyurl.com/2p8d8ba3</u>; <u>https://tinyurl.com/2p8tcn5b</u>; Ball, Forte, Stegeman, arXiv:<u>2110.08274</u>].

The ambiguity in NNLO PDFs due to the χ^2 definition is significant. Must consider better formats to propagate experimental likelihoods into the PDF uncertainties. [See also Cranmer, Prosper, et al., arXiv:2109.04981].

Impact of aN3LO

- gg PDF luminosity at aN3LO (MSHT20) at Higgs mass ~5% lower than nominal NNLO MSHT20
- If correct, then our benchmark cross sections for ggF are wrong

• How robust are the aN3LO PDFs, and in particular the splitting functions?

aN3LO PDF luminosities:

Note different color schemes for the two predictions.

Gluon differences possibly due to differences in P_{gg} splitting functions? Needs more investigation.

Collider measurements of α_s

As the number of NNLO calculations has increased, there have been a growing number of determinations of α_s(m_z) at that order (or higher) from the LHC experiments that have nominal uncertainties that rival the full world average uncertainty

Z p_⊤ event shapes

 It would be nice to understand those uncertainties better, especially if PDF uncertainties are taken into account N³LL+N³LO

ATLAS-CONF-2023-015

Experimental uncertainty	+0.00044	-0.00044
PDF uncertainty	+0.00051	-0.00051
Scale variations uncertainties	+0.00042	-0.00042
Matching to fixed order	0	-0.00008
Non-perturbative model	+0.00012	-0.00020
Flavour model	+0.00021	-0.00029
QED ISR	+0.00014	-0.00014
N4LL approximation	+0.00004	-0.00004
Total	+0.00084	-0.00088

PDF set	$\alpha_{\rm s}(m_Z)$	PDF uncertainty	$g [\text{GeV}^2]$	$q \; [\text{GeV}^4]$	χ^2/dof
MSHT20 [32]	0.11839	0.00040	0.44	-0.07	96.0 /69
NNPDF40 [78]	0.11779	0.00024	0.50	-0.08	116.0/69
CT18A [79]	0.11982	0.00050	0.36	-0.03	97.7 /69
HERAPDF20 [63]	0.11890	0.00027	0.40	-0.04	132.3/69

revisit PDF uncertainties and interplay in fits

New LHC results that can potentially be included in a world average

Exp.	√s / TeV	Lumi / fb ⁻¹	Theory	Obs.	αs(Mz)	∆α₅ exp	∆α₅ oth	∆α₅ scl	Ref.
CMS	13	33.5	NNLO	Jet pT	0.1166	14 (NP)	7	4	JHEP12 (2022) 035
ATLAS	13	139	NNLO	TEEC	0.1175	6	12	+32 -11	2301.09 351
ATLAS	13	139	NNLO	ATEEC	0.1185	9	11	+22 -2	2301.09 351
CMS	13	36.3	NNLO	2D m _{ij}	0.1201	12 (NP)	9	8	SMP-21- 008
CMS	13	36.3	NNLO	3D m _{jj}	0.1201	10 (NP)	10	5	SMP-21- 008
ATLAS	8	20.2	N4LLa+ N3LO	Z pT	0.1183	4	6	4	CONF- 2023- 015

Jet algorithms: arXiv:1903.12563 (LH17)

- At NNLO, there are accidental cancellations, that lead to an artificially low scale uncertainty for processes with small R (0.4) jets
- Prescriptions for restoring reasonable uncertainty estimate
- Similar for Z+jet; H+jet ok
- Look at for 3 jet at NNLO?
- A Les Houches accord?
- Didn't have time to further pursue this at Les Houches, but it will be an ongoing project.

Thank you

for the great time here

including some unexpected developments 🙂