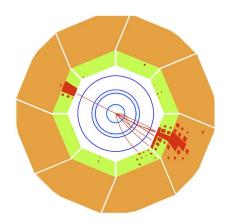
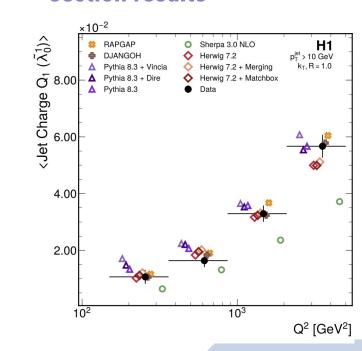


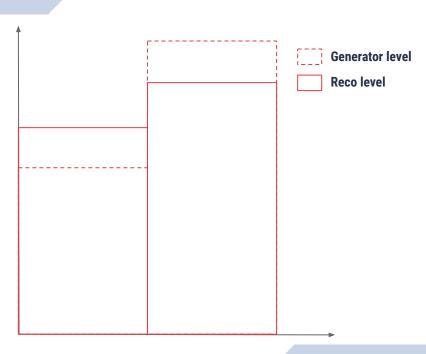
Multi-differential Jet Substructure Measurement in High Q² DIS Events with HERA-II Data


Vinicius Mikuni


1: Unfolding methodology

2: Definition of measure observables

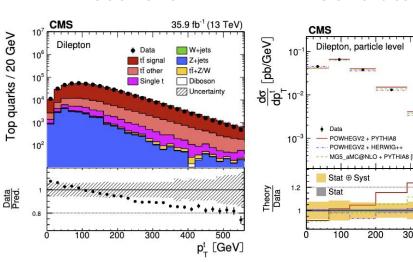
3: Multi-differential cross section results


DIS2023

Unfolding

- We only have access to observables at reconstruction level, i.e after detector effects
- When comparing different theories, we want to compare observables before detector interaction (generator level):
 - Don't require theorists to have expert detector knowledge to compare their predictions
 - Easier to maintain and incorporate new calibration routines for detector simulation
- What I'm **not** talking about today:
 - ► IBU/D'Agostini method
 - ⊳ <u>SVD</u>
 - Matrix inversion
 - Other methods for unfolding using histograms

Unfolding


Traditional methods for unfolding are performed using **histograms**

- Well understood statistical properties
- Clear convergence criteria

Limitations:

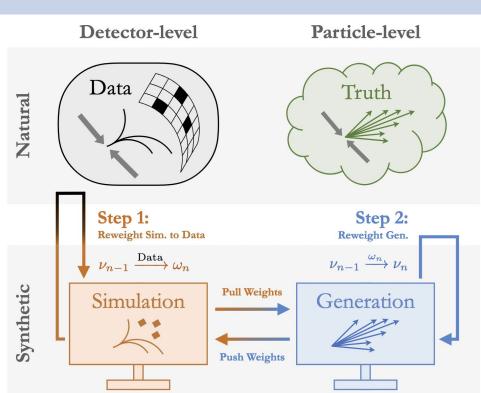
- Histograms need to be defined before unfolding.
 - If a different binning is required, the full unfolding routine needs to be redone
- Often able to address only 1 observable at a time
 - Multi-dimensional histograms are harder to deal with: curse of dimensionality

Reco level

J. High Energ. Phys. 2019, 149 (2019).

Generator level

35.9 fb-1 (13 TeV)


400

500

pt [GeV]

- * Andreassen et al. PRL 124, 182001 (2020) For unfolding using **invertible networks** see:
 - SciPost Phys. 9 (2020)
 074 e-Print: 2006.06685

ML is used to define a method for unfolding that is unbinned and can use multiple distributions at a time **2 step** iterative approach

- Simulated events after detector interaction are reweighted to match the data
- Create a "new simulation" by transforming weights to a proper function of the generated events

Machine learning is used to approximate **2** likelihood functions:

- reco MC to Data reweighting
- Previous and new Gen reweighting

* Andreassen et al. PRL 124, 182001 (2020)

Reco level

Reco level

Iteration 1

Step 1:

- Train a classifier to separate **data** from **MC** events
- Reweight **reco level MC** with weights:

$$W(reco) =$$

$$p_{Data}(reco)/p_{MC}(reco)$$

Reco level

Iteration 1

Step 2:

- Pull weights from step 1 to generator level events
- Train a classifier to separate initial MC at gen level from reweighted MC events
- Define a new simulation with weights that are a proper function of gen level kinematics

$$W(gen) = p_{weighted}$$

$$MC(gen)/p_{MC}(gen)$$

Generator level



Reco level

Iteration 1

- Guaranteed convergence to the maximum likelihood estimate of the generator-level distribution when number of iterations go to infinite
- In practice, less than 10 iterations are enough to achieve convergence

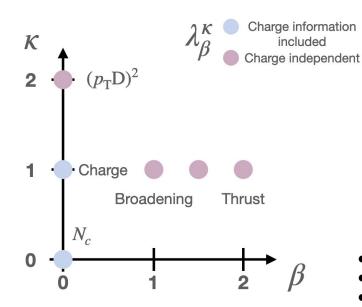
Reco level

Iteration N

- Guaranteed convergence to the maximum likelihood estimate of the generator-level distribution when number of iterations goes to infinite
- In practice, less than 10 iterations are enough to achieve convergence

Part 2

Physics case



Jet angularities

Use jet observables to study different properties of QCD physics:

- Infrared and collinear (IRC) safe λ_a^1 , a = [0,0.5,1] and unsafe $\mathbf{p_T}\mathbf{D}$ angularities
- Charge dependent observables:
 - $\mathbf{Q_j}$ and $\mathbf{N_c}$
- Study the evolution of the observables with energy scale
 O² = -q²

• z_i: longitudinal momentum fraction

q: charge

R_i distance from jet axis in (eta,phi)

$$\lambda_eta^\kappa = \sum_{i \in i
et} z_i^\kappa \left(rac{R_i}{R_0}
ight)^eta$$

$$\tilde{\lambda}_0^{\kappa} = Q_{\kappa} = \sum_{i \in i} q_i \times z_i^{\kappa}.$$

Experimental setup

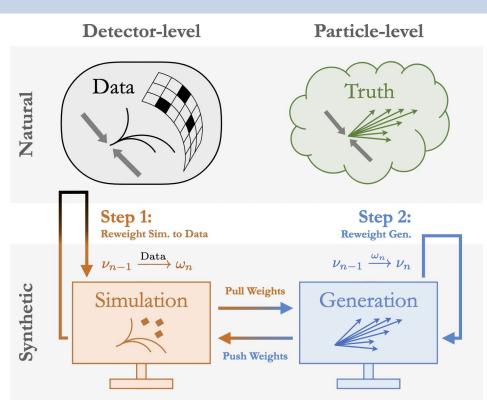
Using 228 pb⁻¹ of data collected by the H1 Experiment during 2006 and 2007 at 318 GeV center-of-mass energy

Phase space definition:

- 0.2 < y < 0.7
- $Q^2 > 150 \text{ GeV}^2$
- Jet $p_{\tau} > 10 \text{ GeV}$
- $-1 < \eta'_{lah} < 2.5$

Jets are clustered with **kt** algorithm with **R=1.0**

27.5 GeV e⁺⁻ (k) 920 GeV p (P)

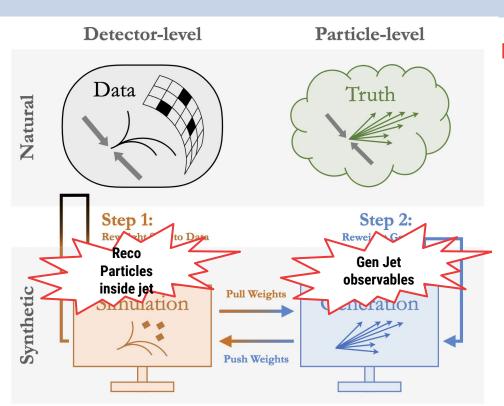

 $Q^2 = -q^2$ y = Pq / pk

P: incoming proton 4-vector k: incoming electron 4-vector q=k-k': 4-momentum transfer

Reconstructed hadrons using combined detector information: **energy flow algorithm**

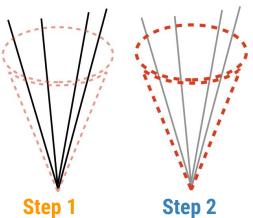
2 step iterative approach

- Simulated events after detector interaction are reweighted to match the data
- Create a "new simulation" by transforming weights to a proper function of the generated events


Machine learning is used to approximate **2** likelihood functions:

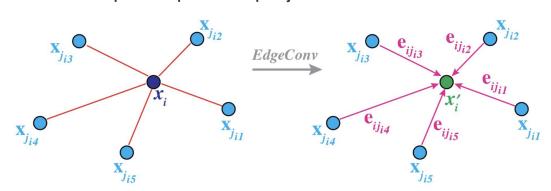
- reco MC to Data reweighting
- Previous and new Gen reweighting

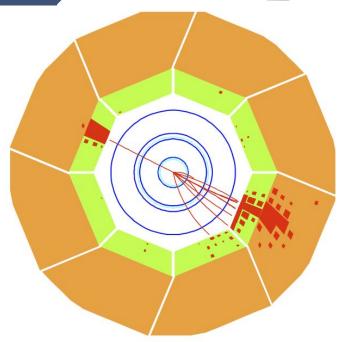
* Andreassen et al. PRL 124, 182001 (2020)



Different input levels for each step

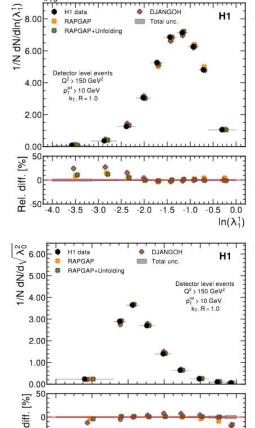
- Step 1 particles are used as inputs
- Step 2 uses the set of observables planned to unfold

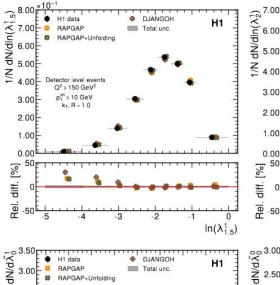


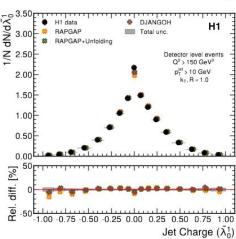


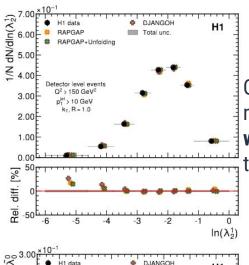
Extracting particle information

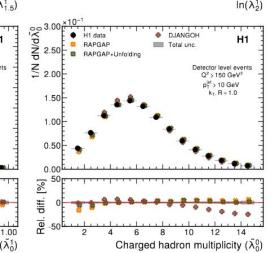
- Particle information is extracted using a Point cloud transformer* model
- Model takes **kinematic properties** of particles and use the distance between particles in η - φ to learn the relationship between particles
- Built in symmetries: permutation invariance
- Consider up to 30 particles per jet



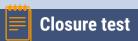

DJANGOH


All distributions are **simultaneously** unfolded.



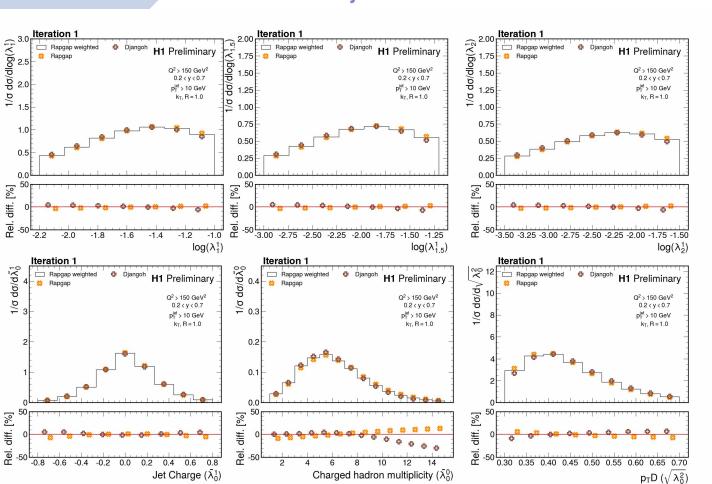

0.6

 $p_T D (\sqrt{\lambda_0^2})$



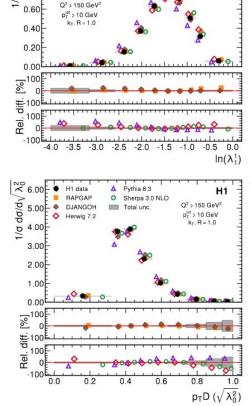
Outputs of the unfolding methodology are weights that are applied to the simulation

- **Green markers** represent the unfolded results at reco level
- Agreement with data improves compared to initial Rapgap simulation


Part 3

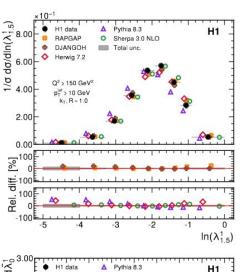
Unfolded results

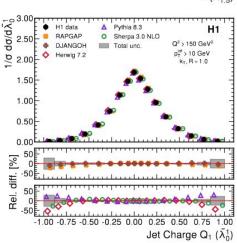
All distributions are unfolded simultaneously without binning and without jet substructure information used at reco level!

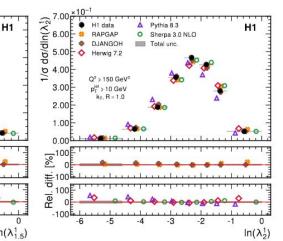

Verify the model
consistency: start from the
Rapgap simulation and
unfold the response based
on the Djangoh simulation

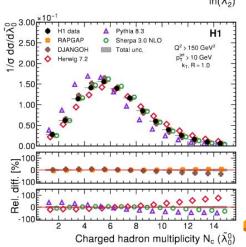
Total of **6 iterations** used to derive the main results

Inclusive

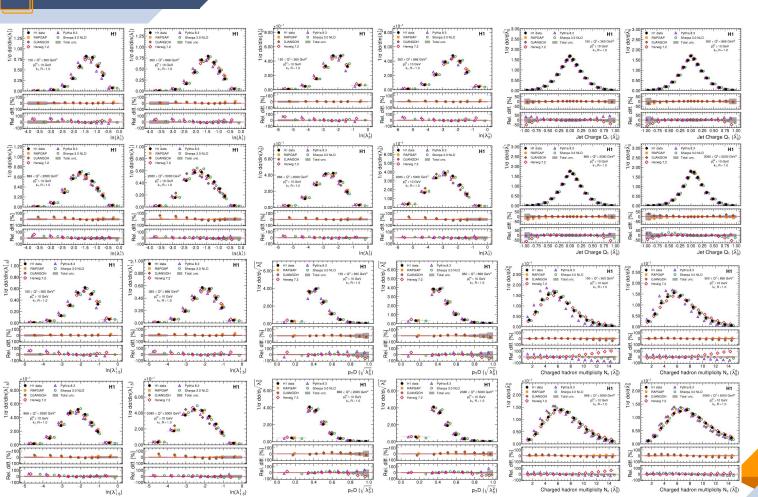

0.80


H1




Sherpa 3.0 NLO

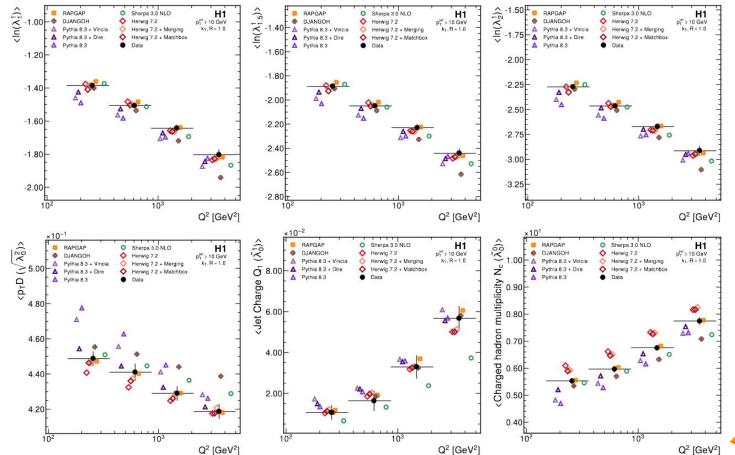
Total unc.



Dedicated DIS generators do a good job **everywhere**, especially **Rapgap**

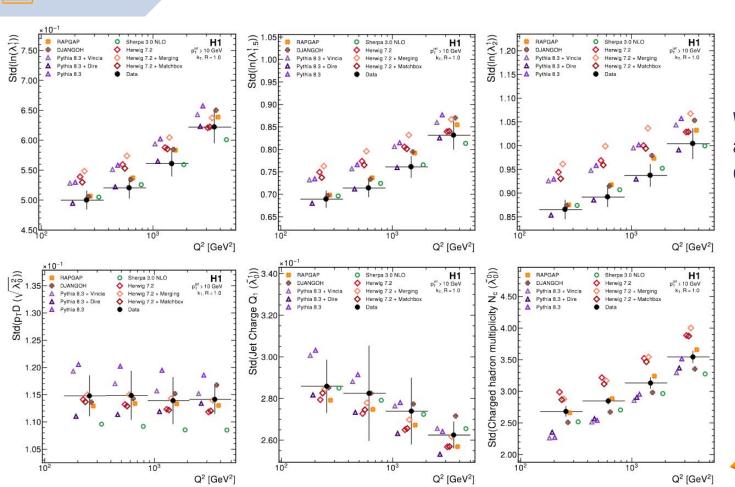
Herwig, Pythia, and (yet unreleased update to) Sherpa do a decent job for most distributions

Multi-differential



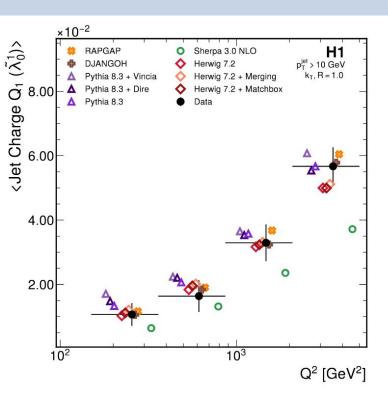
Q² distribution is simultaneously unfolded, displaying the energy scale dependence of the observables, resulting in more than 30 unfolded distributions provided

Mean value of all distributions also unfolded for free


More quark-like behaviour at higher energies: mean jet charge becomes more positive

Agreement between general purpose generators **improve** at higher Q²

Standard deviation of all distributions also unfolded for free


Worse general agreement between data and simulations

Conclusions

Conclusions and prospects

- Jet observables are an unique laboratory to study QCD properties
- Energy scale evolution for each jet observable measured in multiple Q² intervals from 150 to 5000 GeV²
- Detector effects are corrected using the Omnifold method with particles as inputs using graph neural networks
 - Unbinned and simultaneous unfolding
- Unfolded the means and standard deviations without bin artifacts
- Good agreement for dedicated DIS generators, worse agreement for general purpose simulators
- Public results available at: <u>DESY-23-034</u>

THANKS!

Any questions?

Backup

Systematic uncertainties

Systematic uncertainties currently considered

- HFS energy scale: +- 1%
- HFS azimuthal angle: +- 20 mrad
- Lepton energy: +- 0.5% (mainly affects Q²)
- Lepton azimuthal angle: +- 1 mrad (mainly affects Q²)
- Model uncertainty: differences in unfolded results between Djangoh and Rapgap
- **Non-closure uncertainty:** Differences between the expected and obtained values of the closure test
- **QED uncertainty**: Use the variation of measured quantities when radiation is turned off in the simulation
- Statistical uncertainty: Standard deviation of 100 bootstrap samples with replacement

MC Generators

Lund string hadronization model and CTEQ6L PDF set

- Djangoh: Dipole model from Ariadne
- Rapgap: PS from leading log approximation

Pythia 8.3: default NNPDF3.1 PDF

- Vincia: p_{τ} ordered antenna and NNPDF3.1 PDF
- **Dire**: dipole model, similar to Ariadne and MMHT14nlo68cl PDF

Herwig 7.2: Cluster hadronization and CT14 PDF set

Sherpa 3.0: Cluster hadronization pQCD at NLO accuracy for the 1 & 2 jet final states and LO for the 3 jet contribution.